

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Water quality standards for uranium *Proposal for new standards according to the* Water Framework Directive

RIVM Letter report 270006003/2014 R. van Herwijnen | E.M.J. Verbruggen

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Water quality standards for uranium

Proposal for new standards according to the Water Framework Directive

RIVM Letter report 270006003/2014 R. van Herwijnen | E.M.J. Verbruggen

Colofon

© RIVM 2014

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

R. van Herwijnen E.M.J. Verbruggen

Contact: R. van Herwijnen Centre for Safety of Substances and Products rene.van.herwijnen@rivm.nl

This investigation has been performed by order and for the account of the ministry of Infrastructure and the Environment, within the framework of the project "Chemical aspects of WFD and RPS".

This is a publication of:

National Institute for Public Health and the Environment

P.O. Box 1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en

Abstract

New environmental quality standards for uranium in water

Uranium is listed as a specific pollutant in the Dutch decree on monitoring for the Water Framework Directive (*Regeling monitoring Kaderrichtlijn water*). The compound is frequently detected in Dutch surface waters at concentrations above the current standards. New standards are necessary because the current ones do not comply with the most recent guidelines. On request of the Dutch ministry of Infrastructure and Environment (I&M), the RIVM presents a proposal for these new standards. The ministry has accepted the proposals in this report, and will set the new quality standards when updating the decree on monitoring in 2015.

Emission sources

Uranium is a natural compound present in rocks and soils. Its main entry in the environment is through mining, combustion of coal and the use of artificial fertiliser. Because of these sources the environmental concentration of uranium may increase above its natural background concentration. Uranium is commonly known for its radioactivity and use of enriched uranium in nuclear power plants and nuclear weapons. These sources, however, hardly contribute to the anthropogenic emission of uranium to the environment. Furthermore, the chemical toxicity of natural uranium is much more harmful than the potential environmental impact through its radioactivity. Therefore, this proposal is based on the (eco)toxicity of uranium and does not cover radioactivity

Two quality standards for water

Under the Water Framework Directive two types of quality standards are handled: the Annual Average Environmental Quality Standard (AA-EQS) and the Maximum Acceptable Concentration EQS (MAC-EQS). The AA-EQS is the concentration which should protect the ecosystem against adverse effects resulting from long-term exposure. The proposed AA-EQS is 0.5 microgram per litre. The MAC-EQS protects aquatic ecosystems from effects due to short-term exposure or concentration peaks. The latter standard did not exist for uranium and is proposed at 8.9 microgram per litre. Both standards are expressed as dissolved uranium, including background levels. The prosed AA-EQS is lower than the current value. Monitoring data indicate that the proposed value is currently exceeded in some of the Dutch surface waters.

Keywords:

environmental quality standard, uranium, negligible concentration

Publiekssamenvatting

Nieuwe waterkwaliteitsnormen voor uranium

In de Regeling Monitoring Kaderrichtlijn Water (KRW) staat aan welke eisen het oppervlaktewater in Nederland moet voldoen, onder andere voor uranium. Uranium wordt op veel locaties aangetroffen in concentraties boven de huidige norm. Deze norm is echter niet afgeleid volgens de meest recente methodiek. In opdracht van het ministerie van Infrastructuur en Milieu (IenM) heeft het RIVM nieuwe waterkwaliteitsnormen voorgesteld, die het ministerie vervolgens heeft overgenomen – de nieuwe waarden zullen eind 2015 worden opgenomen in de nieuwe Regeling monitoring KRW.

Bronnen van uranium

Uranium is een stof die van nature in rotsen en in de bodem zit. Uranium komt hoofdzakelijk in het milieu terecht via mijnbouw, de verbranding van steenkool en het gebruik van kunstmest. Dit kan ertoe leiden dat de concentratie van uranium in het milieu hoger wordt dan de van nature aanwezige achtergrondconcentratie. Uranium is vooral bekend vanwege de radioactiviteit en het gebruik van de sterk radioactieve vorm in kerncentrales en atoomwapens. Deze bronnen leveren echter maar een kleine bijdrage aan de hoeveelheid uranium in het milieu. De chemische eigenschappen van natuurlijk uranium zijn daarentegen veel schadelijker dan de radioactieve eigenschappen ervan. De normvoorstellen zijn daarom alleen gebaseerd op de (eco)toxicologische eigenschappen van uranium en hebben geen betrekking op de radioactiviteit.

Twee waterkwaliteitsnormen

De Kaderrichtlijn Water hanteert twee typen waterkwaliteitsnormen: de Jaargemiddelde Milieukwaliteitsnorm (JG-MKN) en de Maximaal Aanvaardbare Concentratie (MAC-MKN). De JG-MKN is de concentratie in water waarbij geen schadelijke effecten te verwachten zijn na langdurige blootstelling (0,5 microgram per liter). De MAC-MKN beschermt het ecosysteem tegen kortdurende concentratiepieken (8,9 microgram per liter). Beide normen gelden voor de concentratie uranium die in water is opgelost en de achtergrondconcentratie is in de norm verrekend. De voorgestelde JG-MKN is iets aangescherpt in vergelijking met de huidige norm en zal naar verwachting op een aantal locaties worden overschreden.

Trefwoorden:

uranium, jaargemiddelde milieukwaliteitsnorm, verwaarloosbaar risiconiveau

Contents

Summary – 9

1	Introduction – 11
1.1	Background and aim – 11
1.2	Standards considered – 11
1.3	Current standards – 13
1.4	Use and sources of uranium – 13
1.5	Uranium, radioactivity and speciation – 13
2	Methods — 15
2.1	General — 15
2.2	Added risk approach — 15
2.3	Data collection and evaluation — 16
3	Substance identification, physico-chemical properties, fate and human toxicology – 17
3.1	Identity – 17
3.2	Physico-chemical properties – 18
3.3	Detection limit – 20
3.4	Bioaccumulation, bioconcentration and biomagnification – 20
3.5	Human toxicological threshold limits and carcinogenicity – 26
4	Aquatic toxicity data – 27
4.1	Laboratory toxicity data – 27
4.2	Treatment of fresh- and salt-water toxicity data – 31
5	Derivation of water quality standards – 33
5.1	Derivation of AA-EQS _{fw} and AA-EQS _{sw} – 33
5.1.1	QS _{fw} , eco and QS _{sw} , eco – 33
5.1.2	QS _{fw} , secpois and QS _{sw} , secpois – 35
5.1.3	QS _{water} , hh food – 41
5.1.4	Selection of the AA-EQS _{fw} and AA-EQS _{sw} – 42
5.2	Derivation of QS _{dw} , hh – 43
5.3	Derivation of MAC-EQS _{eco} – 43
5.3.1	Assessment factor approach – 43
5.3.2	SSD approach – 43
5.3.3	Choice of the MAC-EQS _{fw} , eco – 44
5.4	Derivation of NC – 44
5.5	Derivation of SRC _{water} , eco – 44
6	Comparison of derived EQSs with monitoring data — 45
7	Conclusions — 47

Appendix 1 - SCOPUS search profile — 59

Appendix 2 - Data on bioaccumulation — 61

Appendix 3 - Detailed ecotoxicity data — 73

Summary

Uranium is listed as a specific pollutant in the Dutch decree on WFD-monitoring (*Regeling monitoring Kaderrichtlijn water*). In this report a proposal is made for environmental quality standards (EQSs) for uranium in surface water. The quality standards are derived using ecotoxicological, physico-chemical, and human toxicological data originating from an evaluation of the available recent literature. They represent environmental concentrations of the substance offering different levels of protection to man and ecosystems. It should be noted that the proposed EQSs are scientifically derived values. They serve as advisory values for the Dutch Ministry of Infrastructure and the Environment. The ministry has accepted the proposals in this report, and will set the new quality standards when updating the decree on WFD-monitoring in 2015.

Under the WFD, two types of EQSs are derived to cover both long term and short term effects resulting from exposure: an annual average concentration (AA-EQS) to protect against the occurrence of prolonged exposure, and a maximum acceptable concentration (MAC-EQS) to protect against possible effects from short term concentration peaks. For the derivation of the AA-EQS and MAC-EQS for water, the methodology used is in accordance with the WFD. The AA-EQS considers direct ecotoxicity, secondary poisoning of predatory birds and mammals, and exposure of humans via consumption of fish and shellfish. The MAC-EQS is based on direct ecotoxicity only. Since the 'chemical toxicity' of natural uranium is much higher than its 'radiotoxicity', only the first is considered in this report. Recent data on background concentrations in Dutch surface water are taken into account.

Next to the AA-EQS and MAC-EQS, the WFD also considers a standard for surface water used for drinking water abstraction. In addition to these WFD-standards, this report also contains additional risk limits that can be used for the purpose of national water quality policy, e.g. discharge permits or specific policy measures. These are the Negligible Concentration (NC), and the Serious Risk Concentration for ecosystems (SRC_{eco}). For the NC and the SRC_{eco}, existing national guidance was used.

Direct ecotoxicity appeared to be the most critical route for derivation of the AA-EQS. There are strong indications that for birds, exposure to contaminated water plants is a major exposure route. This is not included in the current WFD-methodology, and it is advised to further evaluate the importance of this route. For the saltwater compartiment, reliable data on bioaccumulation and ecotoxicity were absent and it is not possible to propose new standards. An overview of the derived environmental risk limits is given in Table 1. The proposed AA-EQS_{fw} is lower than the current quality standard. Monitoring data indicate that the proposed value will most likely be exceeded in some of the Dutch surface waters.

Table 1. Summary of proposed water quality standards for uranium. Values in
bold are required standards according to the WFD. Values are expressed as
dissolved uranium, including background concentrations

	Value
	[µg U/L]
Freshwater	
AA-EQS	0.5
MAC-EQS	8.9
NC	0.33
SRC _{eco}	56
Surface water for drinking water production	
QS _{dw, hh}	30

1 Introduction

1.1 Background and aim

In this report, a proposal is made for environmental quality standards (EQSs) for uranium in surface water. Uranium is listed in the Dutch decree on monitoring within the context of the Water Framework Directive (WFD), also referred to as *Regeling monitoring KRW*. The current water quality standards for uranium do not comply with the most recent methodology for EQS derivation. The list of so-called 'specific pollutants' included in the *Regeling monitoring KRW* has been evaluated in view of the second round of river basin management plans for 2015–2021 [1]. For those substances remaining on the list, including uranium, updated water quality standards according to the methodology of the WFD have to be derived.

Under the WFD, two types of EQSs are derived to cover both long- and short-term effects resulting from exposure:

- an annual average concentration (AA-EQS) to protect against the occurrence of prolonged exposure, and
- a maximum acceptable concentration (MAC-EQS) to protect against possible effects from short term concentration peaks.

In Dutch, these two WFD-standards are indicated as 'JG-MKN' and 'MAC-MKN', respectively¹.

Quality standards for soil, sediment, groundwater and suspended matter in surface water will not be derived in this report, because they are not relevant for compliance check under the *Regeling Monitoring KRW*.

Since the 'chemical toxicity' of natural uranium is much higher than its 'radio toxicity', only the first is considered for the EQSs in this report.

1.2 Standards considered

As indicated above, this report primarily focuses on the WFD-water quality standards. Next to the AA-EQS and MAC-EQS, the WFD also considers a standard for surface water used for drinking water abstraction. Below, a short explanation on the respective standards is provided and the terminology is summarised in Table 2. Note that all standards refer to dissolved concentrations in water.

 Annual Average EQS (AA-EQS) – a long-term standard, expressed as an annual average concentration (AA-EQS) and normally based on chronic toxicity data which should protect the ecosystem against adverse effects resulting from long-term exposure.

The AA-EQS should not result in risks due to secondary poisoning and/or risks for human health aspects. These aspects are therefore also addressed in the AA-EQS, when triggered by the characteristics of the compound (i.e. human toxicology and/or potential to bioaccumulate).

¹ JG = Jaargemiddelde = annual average; MKN = milieukwaliteitsnorm = environmental quality standard.

Separate AA-EQSs are derived for the freshwater and saltwater environment.

- Maximum Acceptable Concentration EQS (MAC-EQS) for aquatic ecosystems – the concentration protecting aquatic ecosystems from effects due to short-term exposure or concentration peaks. The MAC-EQS is derived for freshwater and saltwater ecosystems, and is based on direct ecotoxicity only.
- Quality standard for surface water that is used for drinking water abstraction ($QS_{dw, hh}$). This is the concentration in surface water that meets the requirements for use of surface water for drinking water production. The $QS_{dw, hh}$ specifically refers to locations that are used for drinking water abstraction.

The quality standards in the context of the WFD refer to the absence of any impact on community structure of aquatic ecosystems. Hence, not the potential to recover after transient exposure, but long-term undisturbed function is the protection objective under the WFD. Recovery in a test situation, after a limited exposure time, is therefore not included in the derivation of the AA- and MAC-EQS.

Type of QS	Protection aim	Terminology for temporary standard ¹	Notes	Final selected quality standard	
	Water organisms	QS _{fw, eco} QS _{sw, eco}	Refers to direct ecotoxicity		
long- term	Predators (secondary poisoning)	QS _{biota} , secpois, fw QS _{biota} , secpois, sw QS _{fw} , secpois QS _{sw} , secpois	QS for fresh- or saltwater expressed as concentration in biota, converted to corresponding concentration in water	 lowest water- based QS is selected as AA- EQS_{fw} and AA-EQS_{sw} 	
	Human health (consumption of fishery products)	QS _{biota, hh food}	QS for water expressed as concentration in biota, converted to corresponding concentration in water; valid for fresh- and saltwater		
short- term	Water organisms	MAC-QS _{fw, eco} MAC-QS _{sw, eco}	Refers to direct ecotoxicity; check with $QS_{\text{fw},\text{eco}}$ and $QS_{\text{sw},\text{eco}}$	MAC-EQS _{fw} MAC-EQS _{sw}	
dw	Human health (drinking water)		Relates to surface water used for abstraction of drinking water	QS _{dw, hh}	

Table 2. Overview of the different types of WFD-quality standards for freshwater (fw), saltwater (sw) and surface water used for drinking water (dw) considered in this report.

¹ Note that the subscript "fw" refers to the freshwater, "sw" to saltwater; subscript "water" is used for all waters, including marine.

For the purpose of national water quality policy, e.g. discharge permits or specific policy measures, two additional risk limits are derived:

 Negligible Concentration (NC) – the concentration in fresh- and saltwater at which effects to ecosystems are expected to be negligible and functional properties of ecosystems are safeguarded fully. It defines a safety margin which should exclude combination toxicity. The NC is derived by dividing the AA-EQS by a factor of 100, in line with the Dutch policy [2,3].

 Serious Risk Concentration for ecosystems (SRC_{eco}) – the concentration in water at which possibly serious ecotoxicological effects are to be expected. The SRC_{eco} is valid for the freshwater and saltwater compartment.

According to the WFD-methodology, the fact that uranium is a naturally occurring element may be taken into account by using the 'added risk approach'. In short, this means that the standards are expressed as concentrations that may be added to the natural background concentration. In this report, the expression of values as an added concentration is indicated by using the subscript 'added', e.g. $QS_{added, fw, eco.}$ Note that the added risk approach is only applicable to direct ecotoxiciy, see section 2.2 for more information.

1.3 Current standards

Since natural background concentrations for uranium in the Netherlands have only recently been officially established, the current standards for uranium are only available as added concentrations, excluding background values. The current Maximum Permissible Additions (MPAs, comparable to the $QS_{added, fw, eco}$) for uranium in fresh- and salt surface water and in groundwater are 1 µg/L. The derivation of these values is reported by Van de Plassche et al. [4].

1.4 Use and sources of uranium

Uranium is a natural element which is mainly known for its use in nuclear power plants and in nuclear weapons. Other (civilian) uses are as counter weight in airplanes and in ammunition. These uses are in general not the main sources of anthropogenic uranium in the environment. Because of its natural presence in rocks and soil, anthropogenic activities like mining, ore processing, agriculture (phosphate fertilizers) and coal combustion contribute to an increased presence of uranium above is natural background concentration [5]. These sources can all be considered relevant for the anthropogenic uranium in the Dutch rivers.

1.5 Uranium, radioactivity and speciation

Uranium is a radioactive substance that is naturally present in the environment in three different isotopes: ²³⁴U, ²³⁵U and ²³⁸U. The latter isotope is most present in the environment (99.3%), has the longest half-life and is therefore the least radioactive. See Table 3 for more details. Only studies performed with uranium in its natural isotope ratio are considered relevant for the EQS derivation. In natural oxygenated systems, the most common oxidation state is the hexavalent uranyl ion (UO^{2+})[6]. The uranyl ion will be available in the toxicity tests when compounds like uranyl nitrate, uranyl acetate, uranyl chloride are dissolved. UO^{2+} itself is not soluble but after release it complexes readily with carbonate, phosphate or sulfate ions. In these complexes uranium is soluble [7].

Isotope	natural presence (%)	half-life (years)
²³³ U	not natural	1.592×10 ³
²³⁴ U	0.0055	2.455×10 ⁵
²³⁵ U	0.72	7.038×10 ⁸
²³⁶ U	not natural	2.342×10 ⁷
²³⁸ U	99.27	4.468×10 ⁹

Table 3. Isotopes of uranium [8]

2 Methods

2.1 General

The methodology is in accordance with the European guidance document for derivation of environmental quality standards under the WFD [9]. This document is further referred to as the WFD-guidance. Additional guidance for derivation of EQSs that are specific for the Netherlands, such as the NC and SRC, can be found in Van Vlaardingen and Verbruggen [10]. This guidance document was prepared for derivation of EQSs in the context of the project "International and national environmental quality standards for substances in the Netherlands (INS)", and is further referred to as the INS-guidance. Similar to the WFD-guidance, the INS-guidance is based on the Technical Guidance Document (TGD), issued by the European Commission and developed in support of the risk assessment of new notified chemical substances, existing substances and biocides [11] and on the Manual for the derivation of Environmental Quality Standards in accordance with the Water Framework Directive [12]. The WFD-guidance also takes into account the most recent guidance developed under REACH [13].

It should be noted that the recent WFD-guidance deviates from the INSguidance for some of aspects. This specifically applies to the treatment of data for freshwater and marine species (see section 4.2) and the derivation of the MAC (see section 5.3), and also holds for the QS for surface waters intended for the abstraction of drinking water ($QS_{dw, hh}$, see section 5.2). Where applicable, the WFD-guidance is followed and the INS-guidance is used for situations which are not covered by the former.

2.2 Added risk approach

For derivation of EQSs for metals, the WFD Guidance [9] proposes to follow the added risk approach and to include background concentrations in the final EQS for metals.

The added risk approach is used to take natural background concentrations into account when calculating EQSs for naturally occurring substances. The approach starts by calculating a maximum addition for chronic exposure and short-term concentration peaks equivalent to the QS_{eco} and MAC- QS_{eco} . These additions, denoted as $QS_{added, eco}$ and MAC- $QS_{added, eco}$, are derived on the basis of available data from laboratory toxicity tests (with added amounts of toxicants). The $QS_{added, eco}$ and MAC- $QS_{added, eco}$ are considered to be the maximum concentrations to be added to the background concentration (C_b), without causing deleterious effects. Hence, the QS_{eco} is the sum of C_b and $QS_{added, eco}$, and the MAC- QS_{eco} is the sum of C_b and MAC- $QS_{added, eco}$.

 $QS_{eco} = C_b + QS_{added, eco}$ $MAC-QS_{eco} = C_b + MAC-QS_{added, eco}$

The background concentration and the QS_{added, eco}/MAC-QS_{added, eco} are independently derived values, where the QS_{added, eco} and MAC-QS_{added, eco} are derived using a similar approach as the QS_{eco} and MAC-QS_{eco} for substances having no natural background concentration.

The aquatic EQSs derived in this report are for dissolved uranium. Monitoring data [14] showed that the uranium in filtered samples is comparable to the concentration in the unfiltered samples. Therefore all measured concentrations in the test solutions are considered as dissolved concentrations. The dissolved concentration of uranium is also considered to be fully bioavailable. In contrast, the background concentration is assumed to be completely unavailable, since at present there is insufficient information to determine the bioavailability of the background concentrations for metals. For uranium, a background concentration of 0.33 μ g/L for the Netherlands has been set [15]. In the database that might be used according to the WFD Guidance (EC, 2011):

<u>http://www.gsf.fi/publ/foregsatlas/;</u> (accessed on 1 November 2012) background concentrations for uranium in the Netherlands are reported ranging from 0.087 to 0.97 µg/L. The new background concentration falls within this range.

The WFD Guidance also notes that the recent developments in the area of biotic ligand modelling (BLM) may be used in the future for the assessment of bioavailability and the calculation of local quality standards after comprehensive data have become available for validation. In the case of uranium no BLMs are present.

2.3 Data collection and evaluation

An online literature search was performed on SCOPUS, the search profile is given in Appendix 1. This profile was run at 27-1-2012. At 28-8-2012 this profile was repeated for the year 2012. The total search resulted in approximately 1700 references, of which more than 90 references were considered relevant. In addition to this, references given in Danish and Canadian reports on derivation of environmental risk limits for uranium [6,16] have been checked for additional references. A REACH dossier on uranium is currently not available.

Studies were evaluated according to the Klimisch criteria [17], where, in the case of uranium, only studies where the endpoints were based on measured values were considered to be valid. Valid L(E)C50-or NOEC/EC10-values were used to construct aggregated data tables for acute and chronic toxicity, respectively, with one effect value per species. Details for construction of these aggregated data tables are given in section 4.1.

3 Substance identification, physico-chemical properties, fate and human toxicology

3.1 Identity

The identities of uranium and uranium salts used in the toxicity tests discussed in chapter 4 are given in the tables below.

Table 4. Identification of uranium

Parameter	Name or number
Chemical name	uranium
CAS number	7440-61-1
EC number	231-170-6
Molecular formula	U
Molecular structure	-

Table 5. Identification of uranyl acetate dihydrate

Table 6. Identification of uranyl dinitrate hexahydrate

Parameter	Name or number	
Chemical name	bis(nitrato-O)dioxouranium	
CAS number	13520-83-7	
EC number	233-266-3	
Molecular formula	$UO_2(NO_3)_2 \times 6H_2O$	
Molecular structure		

Table 7. Identification of uranyl sulphate trihydrate

Table 8. Identification of uranyl phosphate tetrahydrate

Parameter	Name or number
Chemical name	dioxouranium hydrogen phosphate
CAS number	18433-48-2
EC number	242-306-9
Molecular formula	HO ₆ PU
Molecular structure	
	О-Р-ОН
	Ö

Table 9. Identification of uranyl dichloride

Parameter	Name or number
Chemical name	dichlorodioxouranium
CAS number	7791-26-6
EC number	232-246-1
Molecular formula	O ₂ Cl ₂ U
Molecular structure	0 CI

3.2 **Physico-chemical properties**

Table 10. Ph	vsico-chemical	nronerties of	⁻ uranium
10010 10111	ysico chenneur	properties of	aramann

Parameter	Unit	Value	Remark	Ref.
Molecular weight	[g/mol]	238		[18]
Water solubility	[mg/L]			
log K _{ow}	[-]	n.a.		
K _d	[L/kg]	see Table 16		
Vapour pressure	[Pa]	131.6	at 2450°C	[19]
		2.5 x 10 ⁻⁸¹	at 25°C	[18]
Melting point	[°C]	1135		[18]
Boiling point	[°C]	4131		[18]
Henry's law constant	[Pa.m ³ /mol]	-		
n.a. = not applicable.				

Table 11. Physico-chemical properties of uranyl acetate dihydrate

Table 11. Thysico chemical properties of alany accuace anyurate						
Parameter	Unit	Value	Remark	Ref.		
Molecular weight	[g/mol]	424.15		[6]		
Water solubility	[mg/L]	10 ⁵	exp., temp. unknown	[20]		
		77 x 10 ³	15°C	[6]		
log K _{ow}	[-]	1.42	estimated	[20]		
K _d	[L/kg]	see Table 16				
Vapour pressure	[Pa]	0.086	25°C, estimated	[20]		
Melting point	[°C]	loses 2 H ₂ O at 110		[6]		
Boiling point	[°C]	-	decomposes at 275	[6]		
Henry's law constant	[Pa m ³ /mol]	3.3 x 10 ⁻⁵	MW x VP / WS			

n.a. = not applicable. - = not available

Table 12. Physico-chemical properties of uranyl dinitrate hexahydrate

Parameter	Unit	Value	Remark	Ref.
Molecular weight	[g/mol]	502.129		[6]
Water solubility	[mg/L]	soluble,		[6]
		1.3 x 10 ⁶		
		1.9 x 10⁵	estimated from fragments	[21]
log K _{ow}	[-]	2.19	estimated	[21]
K _d	[L/kg]	see Table 16		
Vapour pressure	[Pa]	1.5 x 10 ⁻¹³	25°C, estimated	[21]
Melting point	[°C]	60		[8]
Boiling point	[°C]	decomposes at		[6]
	_	118		
Henry's law	[Pa.m ³ /mol]	3.1 x 10 ⁻¹⁶	MW x VP / WS, calculated	
constant			from EPIWIN value	

n.a. = not applicable.

- = not available

Table 13. Physico-chemical properties of uranyl sulphate trihydrate

Parameter	Unit	Value	Remark	Ref.
Molecular weight	[g/mol]	420.138		[6]
Water solubility	[mg/L]	soluble		[6]
log K _{ow}	[-]	-		
K _d	[L/kg]	see Table 16		
Vapour pressure	[Pa]	-		
Melting point	[°C]	-		
Boiling point	[°C]	-		
Henry's law constant	[Pa.m ³ /mol]	-		
n a – net applicable				

n.a. = not applicable.

– = not available

Table 14. Physico-chemical properties of uranyl phosphate tetrahydrate

Parameter	Unit	Value	Remark	Ref.	
Molecular weight	[g/mol]	437		[6]	
Water solubility	[mg/L]	-			
log Kow	[-]	-			
K _d	[L/kg]	see Table 16			
Vapour pressure	[Pa]	-			
Melting point	[°C]	-			
Boiling point	[°C]	-			
Henry's law constant	[Pa.m ³ /mol]	-			

n.a. = not applicable.

– = not available

Table 15. Physico-chemical properties of uranyl dichloride

Parameter	Unit	Value	Remark	Ref.
Molecular weight	[g/mol]	340.93		[21]
Water solubility	[mg/L]	1.6 x 10⁵	estimated from fragments	[21]
log K _{ow}	[-]	2.85	estimated	[21]
Kd	[L/kg]	see Table 16		
Vapour pressure	[Pa]	2840	25°C, estimated	[21]
Melting point	[°C]	-		
Boiling point	[°C]	-		
Henry's law constant	[Pa.m ³ /mol]	-		

n.a. = not applicable.

- = not available

Mean	Range	Number of	Soil	Ref.						
value		soil tested	characteristic							
2.0 x 10 ²	7 x 10 ⁻¹ – 6.7 x 10 ⁴	178	all soils	[22]						
1.8 x 10 ²	7 x 10 ⁻¹ – 6.7 x 10 ⁴	146	mineral soils	[22]						
1.2 x 10 ³	3.3 x 10 ² – 7.6 x 10 ³	9	organic soils	[22]						
$7.1 \times 10^{1}1$	7 x 10 ⁻¹ – 6.7 x 10 ³	36	pH < 5	[22]						
7.4 x 10 ²	2.6 x 10 ⁰ - 6.7 x 10 ⁴	78	pH 5-7	[22]						
6.5×10^{1}	9 x 10 ⁻¹ - 6.2 x 10 ³	60	pH>7	[22]						
5.0 x 10 ¹	$2.0 \times 10^{1} - 1.0 \times 10^{3}$	unknown	sediment	[22]						

Table 3	16.	Soil sor	ption p	properties	(Kd)	for uran	vl in a se	et of 178	soils ('L/ka)
		00.000	p c. c p		(00.00	

3.3 Detection limit

The detection limit for uranium reported by the WHO is 0.1 $\mu g/L$ for ICP-MS and 0.2 $\mu g/L$ for ICP-AES [23].

3.4 Bioaccumulation, bioconcentration and biomagnification

In the WFD guidance [9] is stated that for metals a bioconcentration factor (BCF) should not be used, because bioconcentration is dependent of the actual exposure concentration and BCF are usually not determined at environmentally realisitic concentrations. Therefore, field-determined bioaccumulation factors (BAF) are preferred over BCFs. An overview of collected BAF and BCF values is given in Table 17 and Table 18 respectively. Only data for freshwater species were available. The BCF values are only presented as indicative values. More details can be found in Appendix 2. Bioaccumulation and bioconcentration of uranium has been studied in a variety of organisms but only data for fish, molluscs and large crustaceans are reviewed because only these are considered relevant for humans. Secondary exposure of predators is considered less relevant because of the relatively high QS_{biota} value (see Section 5.1.2). For secondary poisoning, plant eating birds could also be relevant, but since this route is not implemented in the WFD-quidance, this issue is only briefly discussed in Section 5.1.2 and no full evaluation of bioaccumulation in water plants is performed.

BAFs were determined from uranium concentrations in field collected animals and concentrations in water from the same water body. For bioconcentration, when evaluating the available literature, special consideration is given to maintenance and analysis of exposure concentrations and the accomplishment of equilibrium. Studies in which aqueous concentrations were not analysed were not considered reliable. Static BCFs estimated from the ratio between concentrations in organisms and water were only accepted as valid when actual concentrations were constant and equilibrium had been reached. Kinetic BCFs, estimated from uptake- and elimination rates, could be accepted without equilibrium being reached.

Only whole body BAF/BCFs are presented in Table 17 and Table 18. Data indicate that the internal distribution of uranium in fish differs between organs. In general, concentrations in bone and stomach are highest as compared to other parts of the body. For secondary poisoning, a distinction between organs is not relevant, since predators eat the fish as a whole. For risk limits based on human fish consumption, using whole fish BAFs may overestimate exposure in case only fillet is consumed. Since consumption of other parts cannot be fully excluded, whole body BAFs for fish are used for further calculations.

In Table 17 it can be seen that the highest BAF for fish is the geometric mean for the bony bream *Nematalosa erebi* of 109 L/kg. Underlying values were obtained under exposure concentrations ranging from 0.04 to 0.8 μ g/L which cover the proposed Dutch natural background concentration of 0.33 μ g/L [15]. For molluscs, higher BAF values are reported. The highest geometric mean presented is 660 L/kg for the mussel *Velesunio angasi* originating from 115 different BAFs that were obtained from a large number of animals covering different ages, locations and sampling periods. The reported water concentrations cover the range of 0.01 to 0.2 μ g/L. Although the period of water sampling is not entirely clear, it is presumed that it represents the exposure period.

Since the bioconcentration of metals is dependent of the actual exposure concentration, the BAF could also be affected by the exposure concentration. To evaluate this, Table 17 also presents the different exposure concentrations for each species. The actual exposure dependence of the BAF and which BAF is used to set the risk limits is further assessed in Section 5.1.2.

Species	BAF			<u></u>				Exp. conc.	Ref.
	(L/Kg) Min.	Max.	Avg.	SD	Geom.	Median	Ν	(µg/Ľ)	
Fish			-						
Arius leptaspis	0.85	1.0	0.93	0.11	0.92	0.93	2	0.76	[24]
	25	41	33	11	32	33	2	0.037	
all exp. conc.	0.85	41	17	20	5.4	13	4		
Catostomus catostomus	0.3	-	-	-	-	-	1	3000	[25]
	6.9	-	-	-	-	-	1	5.2	
all exp. conc.	0.3	6.9	3.6	4.7	1.4	3.6	2		
Catostomus commersoni	0.2	-	-	-	-	-	1	2916	[25,26]
	8.9	-	-	-	-	-	1	300	
	13	17	15	2.8	14.9	15	2	267	
	24	-	-	-	-	-	1	210	
all exp. conc.	0.2	24	12.6	8.9	6.2	13	5		
Coregonus artedii	2	-	-	-	-	-	1	267	[25]
Coregonus clupeaformis	4	-	-	-	-	-	1	267	[25]
Couesius plumbeus	0.5	-	-	-	-	-	1	2916	[26]
	1.8	-	-	-	-	-	1	338	
	2	-	-	-	-	-	1	267	
	4	-	-	-	-	-	1	210	
	6.6	-	-	-	-	-	1	300	
all exp. conc.	0.5	6.6	3.0	2.4	2.2	2	5		
Lates calcarifer	36	48	42	8.5	41	42	2	0.037	[24]
Megalops cyprinoides	7.1	7.8	7.5	0.45	7.5	7.5	2	0.052	[24]
Nematalosa erebi	26.6	26.8	26.7	0.14	26.7	26.7	2	0.76	[24]
	203	224	213.5	14.8	213.2	213.5	2	0.052	
	194	261	227.5	47.4	225.0	227.5	2	0.037	
all exp. conc.	27	261	156	103	109	199	6		
Notropis hudsonius	3	-	-	-	-	-	1	210	[25]
	5	-	-	-	-	-	1	267	-
all exp. conc.	3	5	4	1.4	3.9	4	2		

Table 17. Summary of valid BAF data for the bioaccumulation of uranium in freshwater fish and molluscs.

Species	BAF (L/kg)							Exp. conc. (µg/L)	Ref.
	Min.	Max.	Avg.	SD	Geom.	Median	Ν		
Oxyeleotris lineolatus	45	47	46	1.4	46	46	2	0.052	[24]
Percopsis omiscomaycus	2	-	-	-	-	-	1	267	[25]
Prosopium cylindraceum	10.9	-	-	-	-	-	1	5.2	[25]
Pungitius pungitius	1	-	-	-	-	-	1	267	[25]
Salmo trutta	1.5	-	-	-	-	-	1	60	[27]
Salvenius namaycush	0.4	-	-	-	-	-	1	267	[25]
,	3.2	-	-	-	-	-	1	5.2	
all exp. conc.	0.4	3.2	1.8	2.0	1.1	1.8	2		
Strongylura kreffti	1.2	1.4	1.3	0.14	1.3	1.3	2	0.76	[24]
57	4.3	5.6	5.0	0.9	4.9	5.0	2	0.037	
all exp. conc.	1.2	5.6	3.1	2.2	2.5	2.9	4		
Molluscs									
Corbicula fluminea	200						1	12.4	[28]
	810						1	4.2	L - J
all exp. conc.	200	810	510	430	400	510	2		
Hyridella depressa*	28	-	-	-	-	-	1	0.074	[29]
Velesunio ambiguus*	17	-	-	-	-	-	1	0.074	[29]
Velesunio angasi*	581	1162	941	235	911	996	9	0.010	[30-32]
<u> </u>	415	913	658	172	636	656	19	0.014	
	664	1079	847	180	832	747	5	0.018	
	581	1660	961	260	931	913	42	0.020	
	556	1577	837	284	804	768	10	0.033	
	398	797	536	134	523	498	7	0.048	
	127	479	254	129	227	276	7	0.079	
	226	327	277	72	272	277	2	0.104	
	324	473	407	50	404	411	8	0.133	
	194	516	322	137	299	281	6	0.161	
all exp. conc.	130	1700	740	320	660	750	115		

*Values for this species have been recalculated from dry weight to fresh weight on the basis of a moisture content of 91.7 % for bivalves [33].

Species	BCF							Exp. conc.	Ref.
	(L/kg)							(µg/L)	
	Min.	Max.	Avg.	SD	Geom.	Median	Ν		
Fish									
<i>Danio rerio*</i> (adult)	81	93	87	8.6	87	87	2	501	[34-37]
	105	466	190	127	166	137	7	94-102	
	973	973	973	-	973	973	1	20	
all exp. conc	. 81	973	250	280	170	130	10		
Danio rerio* (embryo)	563	1408	3747	2271	3385	3747	2	16.8	[38]
	1230	1230	1230	-	1230	1230	1	87	
all exp. conc	. 560	1400	1100	450	990	1200	3		
Mogurnda mogurnda*	26	26	26	-	26	26	1	90	[39]
5 5	20	20	20	-	20	20	1	180	2 2
	15	17	16	1.4	16.0	16	2	380-410	
	18	23	21	3.5	20.3	21	2	770-800	
	33	34	34	0.7	33.5	34	2	1230-1400	
all exp. conc.	. 15	34	23	7.1	22	21	8		
Oncorhynchus mykiss*	0.7	0.7	0.7	-	0.7	0.7	1	960	[40]
, ,	5.5	5.5	5.5	-	5.5	5.5	1	0.078	2 2
all exp. conc.	. 0.7	5.5	3.1	3.4	1.9	3.1	2		
Salvelinus fontinalis	1.9	1.9	1.9	-	1.9	1.9	1		[27]
	2.5	2.5	2.5	-	2.5	2.5	1		
	2.7	2.7	2.7	-	2.7	2.7	1		
	2.9	2.9	2.9	-	2.9	2.9	1		
	3	3	3	-	3	3	1		
	4	4	4	-	4	4	1		
	4.3	4.3	4.3	-	4.3	4.3	1		
all exp. conc.	. 1.9	4.3	3.0	0.8	3.0	2.9	7		

Table 18. Summary of valid BCF data for the bioconcentration of uranium in freshwater fish, molluscs and large crustaceans.

Species	BCF (L/kg)							Exp. conc. (µg/L)	Ref.
	Min.	Max.	Avg.	SD	Geom.	Median	Ν		
Molluscs									
Corbicula fluminea	345	500	407	82.2	401	375	3	10-20	[41,42,28,43]
	160	217	189	40.3	186	189	2	45-63	
	9	107	72	54.7	45.8	100	3	100	
	22	40	31	12.7	29.7	31	2	500	
	10	10	10	-	10	10	1	1500	
all exp. o	conc. 9	500	170	170	86	107	11		
Large crustaceans									
Orconectes limosus	0.012	0.13	0.073	0.086	0.040	0.073	2	0.9	[28]
	0.022	0.075	0.049	0.037	0.041	0.049	2	2.5	
	0.05	0.02	0.013	0.010	0.01	0.013	2	2.5	
	0.012	0.012	0.012	-	0.012	0.012	1	10.7	
	0.65	0.10	0.084	0.026	0.081	0.084	2	19.6-20.2	
all exp. o	conc. <i>0.0050</i>	0.13	0.050	0.046	0.030	0.022	9		

*Some values for this species have been recalculated from dry weight to fresh weight on the basis of a moisture content of 73.7 % for fish [33].

3.5 Human toxicological threshold limits and carcinogenicity

Elemental uranium has obtained a harmonised classification according to Annex VI of Regulation (EC) No 1272/2008 (CLP Regulation). Uranium is classified with respect to human toxicology as H300 (fatal if swallowed), H330 (fatal if inhaled) and H373 (may cause damage to organs through prolonged or repeated exposure) (www.echa.europa.eu; accessed 29 August 2012). Based on H300 and H373 and the fact that uranium has the potential to accumulate (see Section 3.4), derivation of the $QS_{water, hh food}$ for exposure of humans via fish consumption is triggered. Derivation of the $QS_{dw, hh}$ is also relevant for drinking water.

For human toxicity, the World Health Organization (WHO) has established a tolerable daily intake (TDI) for soluble uranium of 0.6 µg/kg b.w. per day [44,23], this value was based on the lowest-observed-adverse-effect-level (LOAEL) for uranium nephrotoxicity (degenerative lesions in the proximal convoluted tubule of the kidney) of 0.06 mg/kg b.w. per day from a 91-day study in male rats [45]. The assessment factor of 100 was considered sufficient because of the minimal degree of severity of the lesions reported. Also, an additional uncertainty factor for the length of the study (91 days) was considered not necessary because the estimated half-life of uranium in the kidney is 15 days, and there is no indication that the severity of the renal lesions would be exacerbated following continued exposure [23]. The Panel on Contaminants in the Food Chain (CONTAM Panel) of the European Food Safety Authority (EFSA) has reviewed this TDI and noted that no new data were identified that would require a revision of this TDI and endorsed it [46]. This value is taken as the TDI for the calculation of the $QS_{dw, hh}$. In 2011, the WHO has renewed the provisional drinking water guideline value for uranium on the basis of epidemiological studies in human populations [23,47], the new value is raised to 30 μ g/L.

4 Aquatic toxicity data

4.1 Laboratory toxicity data

An overview of the aggregated freshwater toxicity data for uranium is given in Table 19 for acute and in Table 20 for chronic endpoints. Saltwater values are given in Table 21. Detailed toxicity data for uranium are given in Appendix 2. Mesocosm or field studies with uranium are not available.

For inclusion of endpoints, the following aspects were taken into consideration:

- In static tests, concentration measurements should be performed at least at the start and the end of the exposure. For renewal tests, measurement of fresh medium only was accepted if renewal was performed every 24 hours. For flow-through tests, analysis of the fresh medium was considered acceptable.

- The aquatic EQSs derived in this report are for dissolved uranium (i.e., after filtration of water samples over a filter with a maximum pore size of 0.45 μ m). However several studies showed little difference in uranium concentration between filtered and unfiltered samples. Therefore, studies reporting endpoints based on measured concentrations in filtered as well as unfiltered samples were used for the derivation of the aquatic EQSs.

- DOC: From studies where the level of DOC was varied, it could be observed that the presence of DOC reduces the toxicity. Therefore endpoints from studies with a DOC level < 2 mg/L, as being considered relevant for Dutch surface water, are preferred. In cases where these are not available, the endpoint from the study with the lowest level of DOC is selected (indicated between brackets) and used with care.

- Hardness and alkalinity: In general, the influence of hardness on the toxicity data for uranium is not clear; in many cases where hardness was varied in the same study, the results were variable. For alkalinity there is not enough information to determine the effect of alkalinity. However, it seems that in individual cases there might be an influence of hardness and alkalinity. For example, Sheppard et al. [7] state that hardness and alkalinity have an effect on the sensitivity of fish. Therefore, this influence is considered at the species level.

- pH: From different studies performed at varying pH, it could be observed that a pH higher than 7 reduces the toxicity. Therefore, only studies performed at a pH lower than 7 are used.

When several effect data are available for one species, the geometric mean of multiple values for the same endpoint was calculated where possible. Subsequently, when several endpoints (like growth, mortality and/or reproduction) were available for one species, the lowest of these endpoints (per species) is reported in the aggregated data table.

Taxonomic group	L(E)C50 (µg U/L)	Reason for selection
Algae		
Chlorella sp.	67	Levels of hardness below 100 mg CaCO ₃ /L don't seem to influence the toxicity for Chlorella sp. The endpoint is therefore based on a geometric mean of 56, 72 and 74 μ g U/L for hardness levels ranging from 3.6 to 40 mg CaCO ₃ /L at a pH of 7 or lower.
Euglena gracillis	(57)	The endpoint for the lowest DOC level (10 mg/L) available is selected. It should be noted that a test without DOC could result in a lower endpoint.
Macrophyta		
Lemna aequinoctialis	758	From tests without DOC. The relatively high hardness could have influenced the endpoint.
Ctenophora		
Hydra viridissima	104	Experiments performed at higher hardness result in higher endpoints. Therefore selected endpoint based on 114 and 95 μ g U/L obtained at a hardness of 6.6 and 3.9 mg CaCO ₃ /L only.
Crustacea		
Ceriodaphnia dubia	80	Geometric mean of 60, 89, 45, 100, 70, 100, 190 and 50 µg U/L.
Dadaya macrops	1100	Only available value.
Daphnia magna	390	Most sensitive endpoint for 48 h exposure at pH 7.
Diaphanosoma excisum	1000	Only available value.
Latonopsis fasciculate	410	Only available value.
Moinodaphnia macleayi	1290	Only available value.
Pisces		
Ambassus macleayi	800	Most sensitive endpoint for 96 h exposure.
Craterocephalus marianae	1220	Most sensitive endpoint for 96 h exposure.
Melanotaenia nigrans	1700	Most sensitive endpoint for 7 day old fish exposed for 96 h.
Melanotaenia splendida inornata	2660	Most sensitive endpoint for 7 day old fish exposed for 96 h without DOC.
Mogurnda mogurnda	1110	Most sensitive endpoint for 7 day old fish exposed for 96 h in water without DOC.
Pseudomugli tenellus	730	Most sensitive endpoint for 96 h exposure.
Salvenius fontinalis	5500	Most sensitive endpoint for pH 6.7, low hardness and low alkalinity.

Table 19. Aggregated acute toxicity data for freshwater organisms. Bracketed values in italics originate from tests with high DOC and should be used with care.

Table 20. Ag	gregated chronic toxicity	data for freshwater organis	ms. Bracketed values	in italics originate from	tests with high DOC and should
be used with	n care.				

Taxonomic group	NOEC/EC10 (µg U/L)	Reason for selection	
Bacteria			
<i>Desulfovibrio desulfuricans</i> Algae	2618	Only available value.	
Chlorella sp.	2.7	Levels of hardness below 100 mg CaCO ₃ /L don't seem to influence the toxicity for <i>this species</i> . Endpoint is therefore based on a geom. mean of 0.7, 0.7 and 38 μ g U/L for hardness levels ranging from 8 to 40 mg CaCO ₃ /L at a pH of 7 without DOC.	
Euglena gracillis	(5)	The endpoint for the lowest DOC level available is selected. It should be noted that a test without DOC could result in a lower value.	
Macrophyta			
Lemna aequinoctialis	(213)	Endpoints from tests without DOC are preferred, however these are not available. Therefore the endpoint is based on a geometric mean of EC10 values of 189, 234, 244 and 191 μ g U/L determined at a DOC level of 3-4 mg/L. It should be noted that a test without DOC could result in a lower value	
Ctenophora			
Hydra viridissima Mollusca	49	Only available value.	
Amerianna cumingi	(12)	Geometric mean of EC10 values 20, 5, 13 and 15 μ g U/L because the pH of 7.3 does not seem to influence the toxicity. Endpoints from tests without DOC are preferred, however these are not available. Therefore the endpoint is based on a geometric mean of EC10 values of 20, 5, 13 and 15 μ g U/L (including the pH of 7.3 which does not seem to influence the toxicity) determined at a DOC level of 2-6 mg/L. It should be noted that a test without DOC could result in a lower value.	
Crustacea			
Ceriodaphnia dubia	7.7	Geometric mean of EC10 values 22.4, 9, 5, 14 and 18 µg U/L.	
Daphnia magna	14	Most sensitive endpoint EC10 for reproduction at neutral pH.	
Hyalella azteca	144	Geometric mean of 72 and 290 µg U/L for a pH around 7.	
Moinodaphnia macleayi	5.2	Most sensitive endpoint EC10 for mortality, geometric mean of 1.6 and 16.7. Endpoints for lab and wild strains are combined in this endpoint since they represent a natural variety.	
Procambarus clarkia Insecta	(≥ 8340)	Only available value, included as indicative value.	
Chironomus tentans	11.2	Most sensitive endpoint for dry weight.	

Taxonomic group	NOEC/EC10 (µg U/L)	Reason for selection	
Pisces			
Catostomus commersoni	6400	Only available value.	
Danio rerio	138	Only available value.	
Mogurnda mogurnda 880		Geometric mean of EC10 values 1014 and 764 μ g U/L for dry weight of < 10 h old animals exposed for 28 days at DOC of 2.1 and 4.2. It should be noted that a test without DOC is also available but that test resulted in a different endpoint with a higher EC10 value of 1114 μ g U/L. Therefore, this value is considered more appropriate. It should however be noted that a test without DOC could result in a lower endpoint. The difference between hardness and alkalinity for these endpoints was small and therefore not taken into account.	

Table 21. Aggregated toxicity data for salt water organisms.

Chronic Taxonomic group	NOEC/EC10 (μg U/L)	Reason for selection
Bacteria		
Vibrio fischeri	2380	Only available value.

4.2 Treatment of fresh- and salt-water toxicity data

According to the WFD-guidance [9], fresh and saltwater toxicity data for metals should only be combined when there is no demonstrable difference in sensitivity. Since for salt water only a reliable endpoint for one bacterium species is available, it cannot be determined if there are differences in sensitivity. Therefore the datasets cannot be combined and the derivation of EQSs for salt water is not possible.

5 Derivation of water quality standards

5.1 Derivation of AA-EQS_{fw} and AA-EQS_{sw}

5.1.1 $QS_{fw, eco}$ and $QS_{sw, eco}$

For fresh water, a full base set is available and the lowest chronic value available is 2.7 μ g U/L for *Chlorella* sp.

Assessment factor approach

Chronic endpoints are available for algae, daphnia and fish, therefore, an assessment factor of 10 can be applied. The $QS_{added, fw, eco}$ derived from this value will then be 0.27 µg U/L.

SSD approach

As an alternative for the assessment factor method, derivation of the $QS_{added, fw, eco}$ by the SSD method is examined. When endpoints from studies with DOC levels > 2 mg/L are not taken into account, the chronic dataset does not fulfil the requirements for an SSD because data for higher plants are missing:

- Fish: Danio rerio
- A second family in the phylum Chordata: Catostomus commersoni and Mogurnda mogurnda
- A crustacean: Ceriodaphnia dubia, Daphnia magna, Hyalella azteca, Moinodaphnia macleayi and Procambarus clarkia.
- An insect: Chironomus tentans
- A family in a phylum other than Arthropoda or Chordata: Desulvibrio desulfuricans
- A family in any order of insect or any phylum not already represented: Hydra viridissima
- Algae: Chlorella sp.
- Higher plants: <u>no data</u>

When studies with DOC > 2 mg/L are taken into account the requirements would be fulfilled, with *Euglena gracillis*, *Lemna aequinoctialis*, and *Amerianna cumingi* as additional species for the SSD. Therefore, it is investigated what the influence of the studies with DOC is on the HC5.

The SSD determined with ETX [48] for endpoints without studies with a too high DOC-content is shown in Figure 1. The calculated HC5 is 0.82 μ g U/L, with a two sided 90% confidence interval of 0.043 - 4.6 μ g U/L. The goodness of fit is accepted at all levels by the three statistical tests available in the program. When the endpoints based on studies with levels of DOC exceeding 2 mg/L would be included, the calculated HC5 is 0.87 μ g U/L, with a two sided 90% confidence interval of 0.086 - 3.7 μ g U/L. The goodness of fit is accepted at all levels by the three statistical tests available in the program. It is only rejected by the Kolmogorov-Smirnov test at the 0.1 level. The SSD including the endpoints from tests with DOC > 2 mg/L is given in Figure 2.

Figure 1 Species Sensitivity Distribution for uranium (chronic data) excluding endpoints from studies with DOC > 2 mg/L. The X-axis represents logtransformed NOEC/EC10-values in µg U/L, the Y-axis represents the fraction of species affected.

Figure 2 Species Sensitivity Distribution for uranium (chronic data) including endpoints from studies with DOC > 2 mg/L. The X-axis represents logtransformed NOEC/EC10-values in µg U/L, the Y-axis represents the fraction of species affected.

When the HC5 of the SSD without studies with high DOC would be used to determine the $QS_{added, fw, eco}$ with the default assessment factor 5, the $QS_{added,\;fw,\;eco}$ is 0.16 μg U/L. For the SSD including the endpoints from studies Page 34 of 89
with DOC this would be 0.17 μ g U/L. This small difference between the two values and their comparable reliability indicates that the absence of an endpoint for a higher plant in the preferred dataset, nor the inclusion of endpoints derived in the presence of DOC has a major influence on the outcome. Nevertheless, these are uncertainties and because of these, it is considered not appropriate to reduce the default assessment factor of 5. Therefore, the value of 0.17 μ g U/L based on the full dataset is put forward as QS_{added, fw, eco} from the SSD method.

Choice of the QS_{added, fw, eco}

The value from the SSD method is in the same order of magnitude as the $QS_{added, eco}$ derived with the assessment factor method. The SSD method is preferred over the latter because it is based on the total chronic dataset. Therefore, the $QS_{added, fw, eco}$ will be 0.17 µg U/L. The $QS_{fw, eco}$ is determined as $QS_{fw, eco} = QS_{added, eco} + C_b = 0.17 + 0.33 = 0.5 µg/L.$

For saltwater, not enough toxicity data are available to derive an QS_{added, sw, eco}.

5.1.2 QS_{fw, secpois} and QS_{sw, secpois}

No numeric trigger values are defined for the assessment of secondary poisoning for metals [9]. There is not much information on the regulation and the toxic mode of action of uranium in birds and mammals and most BAFs reported for accumulation of uranium by molluscs exceed 100 L/kg (see Section 3.4), and thus, the route secondary poisoning is further assessed. Therefore toxicological data on birds and mammals have been reviewed from which the $QS_{fw, secpois}$ and $QS_{sw, secpois}$ can be derived. Since the water concentrations, on which the BAF values are based includes the natural background concentration, the added risk approach does not apply.

5.1.2.1 Derivation of the QS_{biota, secpois}

It should be considered that some mammal studies have been performed with uranyl fluoride, and uranium tetrafluoride. In human studies it is considered that co-exposure to hydrogen fluoride could occur [8]. In the present report it is assumed that similar co-exposure could occur in the reviewed studies and therefore studies with these compounds were considered not reliable. An overview of all data considered for the QS is given in Appendix 3 and all relevant endpoints are given in Table 22. Unbound values are not directly used for QS derivation and are only included as indication. According to the guidance, reproduction parameters and parameters like growth and mortality are considered relevant for effects on the population level. The TDI is based on a nephrotoxicity endpoint. Nephrotoxicity is considered to be fatal on the individual level, and is therefore considered to be population relevant. However, the endpoint for the TDI was only based on histopathological findings. The underlying study was part of the dataset [45] and no effects on terminal body weight, body weight gain, feed intake, fluid consumption or kidney weight were observed up to a dose of 37 mg U/kg_{bw}/day (equivalent to 740 mg U/kg_{food} if it is assumed that a rat eats 1/20th of its body weight each day). Therefore, the nephrotoxicity endpoint was not included in Table 22 and Appendix 2. The QS_{biota} per species is calculated applying the appropriate assessment factor (AF) (see Table 22) and daily food intake rates following the WFD-guidance. For the assessment factor, it is indicated how they are compiled (AF for caloric content x AF for acute to chronic x AF for QS level). The lowest value is used for QS

derivation. Reliable toxicity data for birds were not available. The only study that was available used powdered uranium metal.

Table 22. Toxicity data for birds and mammals

	Duration	NOEC diet [mg U/kg _{fd}]	AF	QS _{biota, mammal} QS _{biota, bird} [mg U/kg _{fd}]	Reference
mamm	nals				
Dog	30 days	500	3 x 10 x 10	1.7	[49]
Mouse	day 13 of pregnancy to day 21 of lactation	23	3 x 3 x 10	0.26	[50]
Rabbit	30 days	95	3 x 10 x 10	0.32	[49]
Rat	2 year ^a	474	3 x 1 x 10	16	[51]
	2 generations ^b	< 80	3 x 1 x 10	< 2.7	[52]

^a endpoint: growth.

^b endpoint: reproduction.

The lowest QS_{biota, secpois} is 0.26 mg/kg_{fd}. This value is a factor of 10 lower than the unbounded endpoint for 2 generation exposure in rats from Hao et al. [52]. An EC10 calculated from the two exposure concentrations applied by Hao et al. would result in an QS_{biota, secpois} higher than that for the mouse and rabbit. Therefore, the QS_{biota, secpois} of 0.26 mg/kg_{fd} is also considered to be protective for reproduction effects in rats.

The calculation presented above is performed as described in the current WFDguidance. A new guideline is currently being developed [53] where the actual caloric value of the consumed species (e.g. fish or mollusc) is taken into account. In advance of the new guidance the calculation is performed as follows: the underlying NOAEL of the lowest $QS_{biota, secpois}$ is 2.8 mg/kg_{bw}/day for mice with an average weight of 0.028 kg (see Table A3.5 in Appendix 3). For a mouse of 0.028 kg a Daily Energy Expenditure of 70.5 kJ can be calculated [54]. This results in a dose of 0.0011 mg/kJ diet. For consumption of molluscs with a caloric content of 1.6 kJ/g_{fw} [33] this results in 1.8 mg/kg_{fd}. For consumption of fish with a caloric content of 5.5 kJ/g_{fw} this results in 6.1 mg/kg_{fd}. On these values an assessment factor of 30 is applied for the correction from subchronic to chronic exposure and from mouse to ecosystem. This then results in $QS_{biota, secpois}$ of 59 µg/kg_{fd} and 205 µg /kg_{fd} for molluscs and fish respectively.

Table 23. Overview of $QS_{biota, secpois}$ values used in the derivation of QSs for secondary poisoning

QS	QS _{biota} [μg/kg]
secondary poisoning, consumption of fish	205
secondary poisoning, consumption of molluscs	59

5.1.2.2 Derivation of the $QS_{fw, secpois}$ and $QS_{sw, secpois}$

According to the guidance, the next step in the derivation of the QS for secondary poisoning is the conversion of the biotastandard (QS_{biota, secpois}) in a corresponding concentration in water using data on bioaccumulation. The bioaccumulation data are summarised in section 3.4. For the selection of the appropiate BAF, the WFD-guidance points at the importance of evaluating the possibility of BAFs being dependent on external concentrations. In order to investigate the exposure dependence of the BAFs, the collected BAFs for fish and molluscs are plotted against the exposure concentration in Figure 3 and Figure 4, respectively. For producing a general regression line, it is presumed that the dependence of the bioaccumulation on the exposure concentration is the same for all species, although the level of bioaccumulation itself may vary between the species. Therefore, using the program GraphPad Prism [55], a

straight line is fitted through the data points for each individual species, but the slope of these lines is set equal for the datasets of the individual species. The individual lines are presented in Figure 3 and Figure 4. In this way, the slope is determined by the total dataset for fish or molluscs but the Y-intercepts (given in Table 24) are determined by the data points for the individual species. The slopes for fish and molluscs are -0.715 and -0.510 respectively.

Figure 3. Regression between exposure concentration and BAF for individual fish species (left). The plot on the right shows the residuals of the fit. See also text.

Figure 4. Regression between exposure concentration and BAF for individual mollusc species (left). The plot on the right shows the residuals of the fit. See also text.

The slope was significantly lower than 0, indicating that the BAF is really dependent of the exposure concentration. The R^2 of the individual regression lines with the data points for each species is also given in Table 24 (only for the species for which the BAF was determined for more than one exposure concentration). From this table can be seen that for eight out of ten species (eight fish and two molluscs) a reasonable correlation ($R^2 > 0.5$) is found. Additionally, the residuals for the fit for fish and molluscs are also presented in Figure 3 and Figure 4 respectively. A Shapiro-Wilk test was run to show that the residuals were normally distributed (p> 0.05). These details support the conclusion that the bioaccumulation of uranium is indeed dependent of the exposure concentration. In order to deduce a general BAF from the datasets, the mean of the log transformed individual Y-intercepts is calculated (see Table 24). In order to support the use of a mean, the Y-intercepts are plotted in a distribution curve (see Figure 5). The fit of these curves are accepted by all statistical test available in the ETX programm [48] indicating a normal distribution of the log transformed data. The calculated mean, in combination with the slope, determines the red regression line presented in Figure 6 and Figure 7.

	number of		Y-intercept	R ²
	exposure co	nc.	(log L/kg)	
Fish				
Arius leptaspis	2		0.181	0.85
Catostomus catostomus	3		1.657	0.80
Catostomus commersoni	4		2.61	0.64
Couesius plumbeus	5		2.23	0.72
Nematalosa erebi	3		1.36	0.99
Notropis hudsonius	2		2.29	-0.79*
Salvenius namaycush	2		1.18	0.87
Strongylura kreffti	2		-0.153	0.61
Oxyeleotris lineolatus	1		0.745	-
Percopsis omiscomaycus	1		2.04	-
Prosopium cylindraceum	1		1.55	-
Pungitius pungitius	1		1.74	-
Salmo trutta	1		1.45	-
Lates calcarifer	1		0.589	-
Megalops cyprinoides	1		-0.0463	-
Coregonus artedii	1		2.03	-
Coregonus clupeaformis	1		2.34	-
		Mean	1.40	
Molluscs				
Corbicula fluminea	2		3.04	0.633
Hyridella depressa	1		0.871	-
Velesunio ambiguus	1		0.654	-
Velesunio angasi	10		2.01	0.720
-		Mean	1.64	

Table 24. Overview of Y-intercept for all species and correlation parameters (R^2) for species for which the BAF was determined for more than one exposure concentration. See also Figure 3 and Figure 4.

* A negative R² seems impossible but this is not the case. R² is calculated as: 1.0 - (SS_{res}/SS_{tot}) , where SS_{res} is the sum of the squares of the distances of the points from the best-fit curve determined by nonlinear regression and SS_{tot} is the sum of square of the distances of the points from a horizontal line through the mean of all Y values. When SS_{res} is larger than SS_{tot}, R² will be negative. It merely indicates that the fit for this species is very poor. However, it should be noted that this is caused by the fact that both the two exposure concentration and BAF values were very close to each other (two BAF at almost equal water concentration). For more details see the help file of the GraphPad Prism program [55].

Figure 5. Distribution curve of Y-intercepts for fish (left) and molluscs (right).

The internal concentration in biota can be expressed as: $C_{biota} = BAF \times C_{exp}$. For the blue line in Figure 6 and Figure 7 it is converted to $BAF = C_{biota} / C_{exp}$, where C_{biota} is set to the $QS_{biota, secpois}$ for fish or mollusc as derived above and C_{exp} is the x-axis. From these graphs, a BAF and exposure concentration can be determined that are required to produce the C_{biota} . This is the intercept of the red and blue line.

Figure 6. Bioaccumulation of uranium in fish as a function of water concentrations. The regression (red line) is based on the mean of all data points. The blue line is the line where $BAF = C_{biota} / C_{exp.}$ for $C_{biota} = 205 \ \mu g/kg$. See also text below.

Figure 7. Bioaccumulation of uranium in mollusc as a function of water concentrations. The regression (red line) is based on the mean of all data points. The blue line is the line where $BAF = C_{biota} / C_{exp.}$ for $C_{biota} = 59 \ \mu g/kg$. See also text below.

Following the exercise as described above, the following BAFs and exposure concentrations are determined:

Secondary poisoning through fish $C_{biota} = QS_{biota, secpois} = 205 \ \mu g/kg; BAF = 0.13 \ L/kg; C_{water} = 1593 \ \mu g/L$

Secondary poisoning through molluscs $C_{biota} = QS_{biota, secpois} = 59 \ \mu g/kg; BAF = 31.9 \ L/kg; C_{water} = 1.8 \ \mu g/L$

It is considered that there are species consuming only molluscs (e.g. Tufted duck - *Aythya fuligula*), therefore, the values for molluscs are used to assess the exposure through secondary poisoning. The resulting the $QS_{fw, secpois}$ is therefore the C_{water} calculated for molluscs: 1.8 µg/L.

Bioaccumulation of metals is potentially different between fresh and salt water. Since no bioaccumulation data is available for the saltwater environment, a $QS_{sw, secpois}$ could not be derived.

5.1.2.3 Risks of exposure to water plants

Exposure of birds feeding on water plants is generally no part of the assessment of secondary exposure. The main reason is that it is not clear if mammal toxicity data can be used as a representative for birds, when data for the latter are missing. It should however be noted that several water plants have a high potential for accumulation of uranium as well as other metals [56,57]. For example, mean BAFs ranging from 221 L/kg to 22000 L/kg based on dry weight were reported for a large range of aquatic plant species [58-60] and values for Nuphar lutea range from 377 in summer to 2052 L/kg in spring [61]. For the latter study, it is not clear whether concentration factors are on a wet or dry weight basis, but presumably dry weight as well. Further, the reported units do not match with the reported concentration factors. In the Pratas and Favas studies [58-60], mean BAF values for 28 different species were given. For some species a correlation between the BAFs and the uranium concentration in the water was reported but details (e.g. slope and y-intercept) are not given. Nevertheless for most species no correlation between BAFs and exposure concentration was found and at the level of the derived $QS_{fw, secpois}$ the BAFs reported for these plants exceed critical levels. Therefore is concluided that the QS_{fw, secpois} most likely is not protective for birds feeding exclusively on water plants. In this conclusion it is provided that birds are equally sensitive as mammals and the geometric mean of the concentration factors in the studies of Pratas and Favas are realistic for the level of the QS_{fw, secpois}. It is advised that this route is examined in the near future when new methodology on this is available [53].

5.1.3 QS_{water, hh food}

Derivation of QS_{water, hh food} for uranium is triggered (see Section 3.5). This derivation is based on the TDI of 0.6 μ g/kg_{bw}/day. From this TDI the QS_{biota, hh food} can be calculated as 0.1 * 0.6*70/0.115 = 36.5 μ g/kg_{food}. The amount of fishery products consumed by humans is not considered to be determined by the Daily Energy Expenditure and correction for caloric content is therefore not performed.

In order to determine the QS_{water, hh food} and take concentration dependence of the BAF into account, the same exercise as performed for secondary poisoning is performed. In this case, the C_{biota} is set equal to QS_{biota, hh, food} and the

bioaccumulation by molluscs is used as worst case approach. This results in a shift in the blue line (see Figure 8). Bioaccumulation of metals is potentially different between fresh and salt water. Since only bioaccumulation data for freshwater are available, the $QS_{water, hh food}$ can only be derived for the freshwater compartment. In this way the following BAFs and exposure concentrations are determined:

 $C_{biota} = QS_{biota, hh food} = 36.5 \mu g/kg; BAF = 52.6 L/kg; C_{water} = 0.69 \mu g/L$

The resulting $QS_{fw, hh food}$ is the calculated C_{water} : 0.69 µg/L. Since the BAF includes the natural back ground concentration, the added risk approach does not apply.

Since no bioaccumulation data is available for the saltwater environment, a $\text{QS}_{\text{sw, hh food}}$ cannot be derived.

Figure 8. Bioaccumulation of uranium in molluscs as a function of water concentrations. The regression (red line) is based on the geometric mean of all data points where a species gets a higher weight on the basis of the number of data points. The blue line is the line where $BAF = C_{biota} / C_{exp}$ for $C_{biota} = 36.5 \ \mu g/kg$ as determined for human consumption of fishery products. See also text above.

5.1.4 Selection of the AA-EQS_{fw} and AA-EQS_{sw}

 $\begin{array}{ll} \mbox{The derived QSs for the freshwater compartment are:} \\ \mbox{Direct toxicity (QS_{fw, eco})} & 0.50 \ \mu g/L \\ \mbox{Secondary poisoning (QS_{fw, secpois})} & 1.8 \ \mu g/L \\ \mbox{Human consumption of fishery product (QS_{fw, hh food})} & 0.69 \ \mu g/L \\ \mbox{The AA-EQS}_{fw} \ is determined by the lowest QS_{fw}. This is the QS_{fw, eco} of 0.50 \ \mu g/L, \\ \mbox{expressed as dissolved uranium and including the background concentration of } \\ 0.33 \ \mu g/L. \ The value without background is 0.17 \ \mu g/L. \\ \end{array}$

For the saltwater environment no AA-EQS could be derived.

5.2 Derivation of QS_{dw, hh}

For the calculation of the $QS_{dw, hh}$, the added risk approach is not applied. A drinking water standard of 30 µg/L is available from the WHO [23,47]. This value will set the $QS_{dw, hh}$: 30 µg/L.

5.3 Derivation of MAC-EQS_{eco}

For derivation of the MAC-QS_{added, fw, eco}, a full base set is available.

5.3.1 Assessment factor approach

For derivation of the MAC-QS_{added, fw, eco} with the assessment factor method, the default assessment factor of 100 can be applied to the lowest acute value available (67 μ g U/L for *Chlorella* sp.). The MAC-QS_{added, fw, eco} will then be: 0.67 μ g U/L. If however it could be argued that the mode of toxic action is known and the most sensitive taxonomic group is included in the dataset. Then an assessment factor of 10 would be applied. This is however not the case, the mode of action is not fully understood and toxic effects varies between species [62,6]. Also, the standard deviation of the log LC50 values is higher than 0.5.

5.3.2 SSD approach

The acute dataset does not fulfil all requirements for an SSD because endpoints for insects and a family in a phylum other than Arthropoda or Chordata are missing:

- Fish: *Ambassus macleayi*
- A second family in the phylum Chordata: Craterocephalus marianae, Melanota splendida inorata, Melanotaenia nigrans, Mogurnda mogurnda, Pseudomugli tenellus and Salvenius fontinalis
- A crustacean: Ceriodaphnia dubia, Dadaya macrops, Daphnia magna, Diaphanosoma excisum, Latonopsis fasciculate and Moinodaphnia macleayi
- An insect: <u>no data</u>
- A family in a phylum other than Arthropoda or Chordata: no data
- A family in any order of insect or any phylum not already represented: Hydra viridissima
- Algae: *Chlorella* sp.
- Higher plants: Lemna aequinoctialis

Nevertheless, from the chronic data set can be observed that the sensitivity of *Chironomus tentans* falls within the range of endpoints for the Crustacea. Since the acute dataset contains endpoints for six crustaceans, it can be concluded that the absence of an endpoint for insects is well covered by the endpoints for crustaceans. Furthermore, there are 16 acute endpoints, which is higher than the preferred minimum of 10-15. Therefore, an SSD is applied on the acute dataset. The SSD determined with ETX [48] is shown in Figure 9. The calculated HC5 is 86 μ g U/L, with a two sided 90% confidence interval of 31 - 170 μ g U/L. The goodness of fit is accepted at the levels 0.01, 0.025 and 0.05 by the three statistical tests available in the program. Because of this acceptable fit, the HC5 of the SSD can be used to determine the MAC-QS_{added, fw, eco}. With the default assessment factor 10, the MAC-QS_{added, fw, eco} is 8.6 μ g U/L. As can be seen from the acute data, this value is protective for all species in the dataset, including the lowest acute value for algae of 67 μ g/L

Figure 9 Species Sensitivity Distribution for uranium (acute data)

5.3.3 Choice of the MAC-EQS_{fw, eco}

The value from the AF method is about one order of magnitude lower than the MAC-QS_{added} derived with the SSD. Nevertheless, the SSD method is preferred over the assessment factor method because it is based on the total acute dataset and is protective for all species in the dataset. Therefore the MAC-QS_{added}, fw, eco will be 8.6 μ g U/L. The MAC-EQS_{fw} = MAC-QS_{added} + C_b = 8.6 + 0.33 = 8.9 μ g/L.

For saltwater, not enough toxicity data are available to derive a MAC-QS_{sw, eco}.

5.4 Derivation of NC

Negligible additions (NA) are derived by dividing the QS_{added} by a factor of 100. With the AA-EQS_{fw} based on the $QS_{added, fw, eco}$, the NA_{added, fw, eco} will be: 0.17 / 100 = 1.7 ng U/L. With this value the NC_{fw} will be equal to the backgound concentration: 0.33 µg U/L.

5.5 Derivation of SRC_{water, eco}

The SRA_{fw, eco} is calculated as the HC50 of the SSD of the chronic endpoints including those from studies with a DOC-content of > 2mg/L. The calculated value is 56 μ g U/L, with a two sided 90% confidence interval of 17 - 182 mg/L. The SRC_{fw, eco} is determined by SRC = SRA + C_b = 56 + 0.33 = 56 μ g/L.

6

Comparison of derived EQSs with monitoring data

The Dutch Ministry of Infrastructure and Environment does present monitoring data for substances in water and sediment on its website (life.waterbase.nl), but data on uranium are not included. An evaluation of monitoring data over 2006-2009 by Van Duijnhoven [63] showed that the current MPC for uranium was exceeded at several monitoring locations. In 2009, measured 90th percentile concentrations in filtered freshwater samples ranged from 0.22 to 1.5 μ g/L, concentrations in saltwater were between 0.78 and 2.44 μ g/L. These measurements are partly higher than the proposed AA-EQS values, but since they involve 90th percentiles rather than annual averages, a direct comparison cannot be made.

The RIWA (Dutch Association of River Water companies) reports monitoring data for uranium in the Rhine and Meuse basins. Total concentrations and concentrations after filtration are given are given in Table 25 for the years 2006-2012. It can be concluded that annual average concentrations in the Rhine exceed the newly proposed AA-EQS_{fw} (0.5 μ g U/L, dissolved). For the Meuse the proposed AA-EQS_{fw} was only exceeded in a few occasions. None of the maximum concentrations exceeds the MAC-EQS_{eco} for freshwater (8.9 μ g U/L, dissolved). In 2012, the annual average was below the QS derived for human consumption of fish of 0.69 μ g/L in almost all cases, and a risk for humans is not expected.

Since agricultural use is one of the potential sources of uranium emission, it may be expected that higher concentrations may be found in smaller water bodies adjacent to places of fertiliser use. A full evaluation of such data, if available, is outside the scope of this report. The new standards will be used for the preparation of the river basin management plans for the next assessment period (2016-2021), and this will reveal if measures are needed on a river basin scale.

Location	2006		2007		2008		2009		2010		2011		2012		Average 2006- 2012
	aa. ^d	max	aa.	max	aa.	max	aa.	max	aa.	max	aa.	max	aa.	max	
Rhine															
Lobith	0.76	0.89	0.75	0.90	0.77	0.85	0.76	0.88	0.76	0.80	0.81	0.94	0.72	0.84	0.76
after filtration	n 0.72	0.91	0.71	0.75	0.76	0.84	0.74	0.85	0.73	0.85	0.77	0.95	0.70	0.81	0.73
Nieuwegein ^a	_ e	-	-	-	-	-	-	-	0.77	0.88	0.83	0.98	0.72	0.85	0.77
after filtration	n -	-	-	-	-	-	-	-	0.74	0.85	0.78	0.99	0.69	0.83	0.74
Nieuwersluis ^b	0.72	0.80	-	-	-	-	-	-	0.70	0.74	0.72	0.85	0.67	0.78	0.70
after filtration	n -	-	-	-	-	-	-	-	0.69	0.74	0.70	0.86	0.66	0.78	0.68
Andijk ^c	-	-	-	-	-	-	-	-	0.65	0.73	0.67	0.79	0.60	0.69	0.64
after filtratio	n -	-	-	-	-	-	-	-	0.64	0.67	0.66	0.80	0.60	0.67	0.63
							Ov	erall av	erage fo	r the Rh	ine basi	n	befor	e filtration	0.72
									-				afte	er filtration	0.70
Meuse															
Fiisden	0 48	0.87	0 40	0.66	0 45	12	-	-	-	-	0 51	0.68	0.36	0 56	0 44
after filtratio	n 0 46	0.84	0.39	0.59	0 44	0.87	-	-	-	-	0.50	0.67	0.35	0.56	0.43
Heel	-	-	-	-	-	-	-	-	0 44	0.58	0.49	0.61	0.37	0.51	0.43
after filtratio	n -	-	-	-	-	_	-	-	0.42	0.58	0.48	0.61	0.36	0.51	0.42
Brakel	· _	-	_	-	-	_	-	-	0.48	0.54	0.46	0.53	0 42	0 54	0.45
after filtratio	n -	-	-	-	-	_	-	-	0.48	0.53	0.46	0.55	0.43	0 54	0.46
Keizersveer	0 40	0 52	0.36	0 45	0 35	0 45	-	_	0.57	0.62	0 41	0.46	0 34	0.39	0.41
after filtratio	n 0 39	0.32	0.36	0.15	-	-	-	-	0.37	0.02	0.39	0.45	0.37	0.39	0.11
Stellendam	-	-	-	-	_	_	_	_	0.57	0.15	0.55	0.15	0.52	0.33	0.57
after filtration	n -	-	_	-	-	_	-	-	0.66	0.78	0.73	0.89	0.61	0.75	0.67
							0.74	arall ave	rage for	r the Me	use hasi	n 0.09	hefor	e filtration	0.07
							500		age io			••	afte	er filtration	0.47

Table 25 Total and dissolved concentrations (µg U/L) of uranium in surface water of the Rhine and Meuse for the years 2006-2012. Source: RIWA

^a Lek canal.

^b Amsterdam-Rhine canal.

^c Lake IJsselmeer

^d aa. = annual average.

^e - = not reported.

Conclusions

7

In this report, the Annual Average Environmental Quality Standard (AA-EQS), Maximum Acceptable Concentration for ecosystems (MAC-EQS), additional risk limits Negligible Concentration (NC), and Serious Risk Concentration for ecosystems (SRC_{eco}) are derived for uranium in fresh surface waters. Direct ecotoxicity appeared to be the most critical route for derivation of the AA-EQS. However, the potential risks for birds feeding exclusively on water plants have not been fully examined. It is therefore not clear if the proposed AA-EQS for freshwater is sufficiently protective for this route.

Corresponding values for the saltwater compartment could not be derived due to a lack of data on bioaccumulation and ecotoxicity data for saltwater species. The proposed EQSs and additional risk limits are summarised in the table below. The proposed AA-EQS for freshwater of 0.5 μ g U/L is lower than the current standard of 1.33 μ g U/L.

Monitoring data indicate that the proposed AA-EQS_{fw} will most likely be exceeded in some of the Dutch surface waters. In the recent past, there have been no cases where the proposed MAC-EQS_{fw} has been exceeded.

	Value
	[µg U/L]
Freshwater	
AA-EQS	0.5
MAC-EQS	8.9
NC	0.33
SRC	56
Surface water for drinking water production	
QS _{dw. hh}	30

Table 26. Summary of proposed water quality standards for uranium. Values in bold are required standards according to the WFD. Values are expressed as dissolved concentrations, including background levels.

References

Reference list includes references used in the appendices.

- 1. Smit CE, Wuijts S. 2012. Specifieke verontreinigende en drinkwater relevante stoffen onder de Kaderrichtlijn water Selectie van potentieel relevante stoffen voor Nederland. Bilthoven, the Netherlands: RIVM. Report no. 601714022.
- 2. VROM. 1999. Environmental risk limits in the Netherlands. A review of environmental quality standards and their policy framework in the Netherlands. The Hague: Ministry of Housing, Spatial Planning and the Environment.
- 3. VROM. 2004. (Inter)nationale Normen Stoffen. The Hague: Ministry of Housing, Spatial Planning and the Environment.
- Van de Plassche EJ, Van den Hoop MAGT, Posthumus R, Crommentuijn T. 1999. Risk limits for boron, silver, titanium, tellurium, uranium and organosilicon compounds in the framework of EU Directive 76/464/EEC. Bilthoven, The Netherlands: National Institute of Public Health and the Environment (RIVM). Report no. 601501005.
- 5. Birke M, Rauch U, Lorenz H, Kringel R. 2010. Distribution of uranium in German bottled and tap water. Journal of Geochemical Exploration. 107: 272-282.
- 6. CCME. 2011. Scientific criteria document for the development of the Canadian water quality guidelines for the protection of aquatic life Uranium. Gatineau, Canada: Canadian Council of Ministers of the Environment. Report no. PN 1451.
- Sheppard SC, Sheppard MI, Gallerand MO, Sanipelli B. 2005. Derivation of ecotoxicity thresholds for uranium. Journal of Environmental Radioactivity. 79: 55-83.
- 8. ATSDR. 2011. Draft toxicological profile for uranium. Atlanta, USA: Agency for Toxic Substances and Disease Registry.
- EC. 2011. Technical guidance for deriving environmental quality standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Brussels: European Communities.
- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of "International and national environmental quality standards for substances in the Netherlands" (INS). Bilthoven, The Netherlands: National Institute of Public Health and the Environment (RIVM). Report no. 601782001.
- 11. EC. 2003. Technical Guidance Document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Ispra, Italy: European Commission Joint Research Centre.
- 12. Lepper P. 2005. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.
- 13. ECHA. 2008. Guidance on information requirements and chemical safety assessment Chapter R.10: Characterisation of dose [concentration]-response for environment. Helsinki, Finland: European Chemicals Agency.

- 14. RIWA. 2011. Jaarrapport 2010 De Rijn. Nieuwegein: RIWA Vereniging van Rivierwaterbedrijven.
- Osté L. 2013. Derivation of dissolved background concentrations in Dutch surface water based on a 10th percentile of monitoring data. Delft: Deltares. Report no. 1206111-005-BGS-0005.
- 16. Anonymous. 2011. Fastsættelse af kvalitetskriterier for vandmiljøet Uran. Kopenhagen: Miljøministeriet.
- 17. Klimisch HJ, Andreae M, Tillman U. 1997. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology. 25: 1-5.
- 18. Lide DR (Ed.) 2005. CRC Handbook of Chemistry and Physics, CD-ROM Version, Boca Raton, USA, CRC Press.
- 19. EU-ECB. 2000. IUCLID dataset on uranium. Brussels: European Commission European Chemicals Bureau.
- 20. SRC. 2012. Interactive PhysProp Database Demo. SRC.
- 21. US EPA. 2009. EPI Suite (computer program). Version 4.0. Washington, DC, U.S. Environmental Protection Agency (EPA) Office of Pollution Prevention Toxics and Syracuse Research Company (SRC).
- 22. IAEA. 2010. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Vienna: Internation Atomic Energy Agency.
- WHO. 2012. Uranium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality. Geneva, Switzerland: World Health Organization. Report no. WHO/SDE/WSH/03.04/118/Rev/1.
- 24. Martin P, Hancock GJ, Johnston A, Murray AS. 1998. Natural-series radionuclides in traditional North Australian Aboriginal foods. Journal of Environmental Radioactivity. 40: 37-58.
- 25. Swanson SM. 1983. Levels of 226Ra, 210Pb and (total)U in fish near a Saskatchewan uranium mine and mill. Health Physics. 45: 67-80.
- 26. Swanson SM. 1985. Food-chain transfer of U-series radionuclides in a northern Saskatchewan aquatic system. Health Physics. 49: 747-770.
- 27. Parkhurst BR, Elder RG, Meyer JS. 1984. An environmental hazard evaluation of uranium in a Rocky Mountain stream. Environmental Toxicology and Chemistry. 3: 113-124.
- 28. Simon O, Garnier-Laplace J. 2005. Laboratory and field assessment of uranium trophic transfer efficiency in the crayfish *Orconectes limosus* fed the bivalve *C. fluminea*. Aquatic Toxicology. 74: 372-383.
- 29. Markich SJ, Brown PL, Jeffree RA. 2001. Divalent metal accumulation in freshwater bivalves: An inverse relationship with metal phosphate solubility. Science of the Total Environment. 275: 27-41.
- Bollhöfer A. 2012. Stable lead isotope ratios and metals in freshwater mussels from a uranium mining environment in Australia's wet-dry tropics. Applied Geochemistry. 27: 171-185.
- 31. Bollhöfer A, Brazier J, Humphrey C, Ryan B, Esparon A. 2011. A study of radium bioaccumulation in freshwater mussels, *Velesunio angasi*, in the Magela Creek catchment, Northern Territory, Australia. Journal of Environmental Radioactivity. 102: 964-974.
- Ryan B, Bollhöfer A, Martin P. 2008. Radionuclides and metals in freshwater mussels of the upper South Alligator River, Australia. Journal of Environmental Radioactivity. 99: 509-526.
- 33. EFSA. 2009. Risk assessment for birds and mammals. EFSA journal. 7: 1438.

- Augustine S, Gagnaire B, Adam-Guillermin C, Kooijman SALM. 2012. Effects of uranium on the metabolism of zebrafish, *Danio rerio*. Aquatic Toxicology. 118-119: 9-26.
- 35. Barillet S, Adam C, Palluel O, Devaux A. 2007. Bioaccumulation, oxidative stress, and neurotoxicity in *Danio rerio* exposed to different isotopic compositions of uranium. Environmental Toxicology and Chemistry. 26: 497-505.
- Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux A. 2011. Uranium bioaccumulation and biological disorders induced in zebrafish (*Danio rerio*) after a depleted uranium waterborne exposure. Environmental Pollution. 159: 495-502.
- Barillet S, Larno V, Floriani M, Devaux A, Adam-Guillermin C. 2010. Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (*Danio rerio*) by a waterborne uranium exposure. Aquatic Toxicology. 100: 295-302.
- Bourrachot S, Simon O, Gilbin R. 2008. The effects of waterborne uranium on the hatching success, development, and survival of early life stages of zebrafish (*Danio rerio*). Aquatic Toxicology. 90: 29-36.
- 39. Cheng KL, Hogan AC, Parry DL, Markich SJ, Harford AJ, van Dam RA. 2010. Uranium toxicity and speciation during chronic exposure to the tropical freshwater fish, *Mogurnda mogurnda*. Chemosphere. 79: 547-554.
- 40. Poston TM, Hanf Jr RW, Simmons MA. 1984. Toxicity of uranium to *Daphnia magna*. Water, Air, and Soil Pollution. 22: 289-298.
- 41. Simon O, Floriani M, Cavalie I, Camilleri V, Adam C, Gilbin R, Garnier-Laplace J. 2011. Internal distribution of uranium and associated genotoxic damages in the chronically exposed bivalve *Corbicula fluminea*. Journal of Environmental Radioactivity. 102: 766-773.
- 42. Simon O, Garnier-Laplace J. 2004. Kinetic analysis of uranium accumulation in the bivalve *Corbicula fluminea*: effect of pH and direct exposure levels. Aquatic Toxicology. 68: 95-108.
- 43. Tran D, Massabuau JC, Garnier-Laplace J. 2004. Effect of carbon dioxide on uranium bioaccumulation in the freshwater clam *Corbicula fluminea*. Environmental Toxicology and Chemistry. 23: 739-747.
- WHO. 2004. Uranium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality. Geneva, Switzerland: World Health Organization. Report no. WHO/SDE/WSH/03.04/118.
- 45. Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Valli VE, Willes RJ, Moss MA. 1998. Uranyl nitrate: 28-day and 91-day toxicity studies in the sprague- dawley rat. Toxicological Sciences. 41: 117-128.
- 46. EFSA. 2009. Scientific opinion Uranium in foodstuffs, in particular mineral water. The EFSA Journal. 1-59.
- 47. WHO. 2011. Guidelines for Drinking-water Quality Fourth Edition. Geneva: World Health Organization. Report no. WA 675.
- 48. Van Vlaardingen P, Traas TP, Wintersen AM, Aldenberg T. 2004. EtX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. Bilthoven, The Netherlands: National Institute for Public Health and the Environment. Report no. 601501028.
- Maynard EA, Hodge HC. 1949. Studies of the toxicity of various uranium compounds when fed to experimental animals. IN Voegtlin C, Hodge HC (Eds.) Pharmacology and toxicology of uranium compounds. New York, McGraw-Hill book company, Inc.

- 50. Domingo JL, Ortega A, Paternain JL, Corbella J. 1989. Evaluation of the perinatal and postnatal effects of uranium in mice upon oral administration. Archives of Environmental Health. 44: 395-398.
- 51. Maynard EA, Downs WL, Hodge HC. 1953. Oral toxicity of uranium compounds. IN Voegtlin C, Hodge HC (Eds.) Pharmacology and toxicology of uranium compounds. New York, McGraw-Hill book company, Inc.
- 52. Hao Y, Li R, Leng Y, Ren J, Liu J, Al G, Xu H, Su Y, Cheng T. 2012. The reproductive effects in rats after chronic oral exposure to low-dose depleted uranium. Journal of Radiation Research. 53: 377-384.
- 53. Verbruggen EMJ. In prep. Guidance for the derivation of environmental risk limits. Part XX. Secondary poisoning. Bilthoven: RIVM.
- 54. DEFRA. 2007. Improved estimates of food and water intake for risk assessment. London, UK: Department for Environment, Food and Rural Affairs (DEFRA), Science Directorate, Management Support and Finance Team.
- 55. GraphPad. 2013. GraphPad Prism (computer program). Version 6.03. La Jolla, CA, GraphPad Software.
- Sasmaz A, Obek E. 2009. The accumulation of arsenic, uranium, and boron in *Lemna gibba* L. exposed to secondary effluents. Ecological Engineering. 35: 1564-1567.
- 57. Srivastava S, Bhainsa KC, D'Souza SF. 2010. Investigation of uranium accumulation potential and biochemical responses of an aquatic weed *Hydrilla verticillata* (L.f.) Royle. Bioresource Technology. 101: 2573-2579.
- 58. Pratas J, Favas P, Rodrigues N, Prasad M, Freitas H. 2010. Phytofiltration of uranium by aquatic plants of Central Portugal. Advances in Waste Management. Kantaoui, Sousse, Tunisia, WSEAS Press.
- 59. Pratas J, Favas PJC, Paulo C, Rodrigues N, Prasad MNV. 2012. Uranium accumulation by aquatic plants from uranium-contaminated water in central Portugal. International Journal of Phytoremediation. 14: 221-234.
- Favas PJC, Pratas J, Varun M, D'Souza R, Paul M. 2014. Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Science of the Total Environment. 470-471: 993-1002.
- 61. Mahon DC, Mathewes RW. 1983. Seasonal variation in the accumulation of radionuclides of the uranium series by Yellow Pond-Lily (*Nuphar lutea*). Bulletin of Environmental Contamination and Toxicology. 30: 575-581.
- Al Kaddissi S, Legeay A, Gonzalez P, Floriani M, Camilleri V, Gilbin R, Simon O. 2011. Effects of uranium uptake on transcriptional responses, histological structures and survival rate of the crayfish *Procambarus clarkii*. Ecotoxicology and Environmental Safety. 74: 1800-1807.
- 63. van Duijnhoven N. 2011. Inzicht in landelijke kwaliteitsdata 2006-2009. Achtergronddocument t.b.v. update stoffenlijst MR monitoring. Utrecht: Deltares. Report no. 1204085-001-BGS-0019.
- 64. Mahon DC. 1982. Uptake and translocation of naturally-occurring radionuclides of the uranium series. Bulletin of Environmental Contamination and Toxicology. 29: 697-703.
- 65. Goulet RR, Fortin C, Spry DJ. 2011. Uranium. Fish Physiology. 31: 391-428.
- 66. Skwarzec B. 1997. Polonium, uranium and plutonium in the southern Baltic Sea. Oceanological Studies. 26: 195-204.
- 67. Skwarzec B. 1997. Polonium, uranium and plutonium in the Southern Baltic Sea. AMBIO. 26: 113-117.
- Skwarzec B, Strumińska DI, Boryło A. 2006. Radionuclides of iron (55Fe), nickel (63Ni), polonium (210Po), uranium (234U, 235U, 238U) and plutonium (238Pu, 239+240Pu, 241Pu) in Poland and Baltic Sea environment. Nukleonika. 51: S45-S51.

- 69. Beak. 1987. Survey of data on the radionuclide content of fish in Canada. Ottawa: Atomic Energy Control Board. Report no. INFO-0231-1.
- Stegnar P, Kobal I. 1982. Uptake and distribution of radium and uranium in the aquatic food chain. Environmental migration of long-lived radionuclides. Proc. symposium, Knoxville, July 1981, (International Atomic Energy Agency, Vienna, STI/PUB/597). 364-373.
- 71. Pettersson HBL, Hallstadius L, Hedvall R, Holm E. 1988. Radioecology in the vicinity of prospected uranium mining sites in a subarctic environment. Journal of Environmental Radioactivity. 6: 25-40.
- 72. Johnston A. 1987. Technical memorandum 20 Radiation exposure of members of the public resulting from operation of the Ranger uranium mine. Canberra: Supervising Scientist for the Alligator Rivers Region.
- 73. Clulow FV, Davé NK, Lim TP, Avadhanula R. 1998. Radionuclides (lead-210, polonium-210 thorium-230, and -232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution. 99: 199-213.
- Lourenco J, Castro BB, Machado R, Nunes B, Mendo S, Goncalves F, Pereira R. 2010. Genetic, biochemical, and individual responses of the teleost fish *Carassius auratus* to uranium. Archives of Environmental Contamination and Toxicology. 58: 1023-1031.
- 75. Barillet S, Buet A, Adam C, Devaux A. 2005. Does uranium exposure induce genotoxicity in the teleostean *Danio rerio*? First experimental results. Radioprotection. 40: S175-S181.
- 76. Lerebours A, Adam-Guillermin C, Brethes D, Frelon S, Floriani M, Camilleri V, Garnier-Laplace J, Bourdineaud J-P. 2010. Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (*Danio rerio*) exposed to low concentrations of waterborne uranium. Aquatic Toxicology. 100: 66-74.
- 77. Lerebours A, Gonzalez P, Adam C, Camilleri V, Bourdineaud J-P, Garnier-Laplace J. 2009. Comparative analysis of gene expression in brain, liver, skeletal muscles, and gills of zebrafish (*Danio rerio*) exposed to environmentally relevant waterborne uranium concentrations. Environmental Toxicology and Chemistry. 28: 1271-1278.
- Labrot F, Narbonne JF, Ville P, Saint Denis M, Ribera D. 1999. Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam *Corbicula fluminea* and the worm *Eisenia fetida*: Comparison with the fish *Brachydanio rerio*. Archives of Environmental Contamination and Toxicology. 36: 167-178.
- 79. Blaylock BG. 1982. Radionuclide data bases available for bioaccumulation factors for freshwater biota. Nuclear Safety. 23: 427-438.
- Buet A, Barillet S, Camilleri C. 2005. Changes in oxidative stress parameters in fish as response to direct uranium exposure. Radioprotection. 40: S151-S155.
- 81. Poston TM. 1982. Observations on the bioaccumulation potential of thorium and uranium in rainbow trout (*Salmo gairdneri*). Bulletin of Environmental Contamination and Toxicology. 28: 682-690.
- Tran D, Bourdineaud J-P, Massabuau JC, Garnier-Laplace J. 2005. Modulation of uranium bioaccumulation by hypoxia in the freshwater clam *Corbicula fluminea*: Induction of multixenobiotic resistance protein and heat shock protein 60 in gill tissues. Environmental Toxicology and Chemistry. 24: 2278-2284.
- Cooley HM, Klaverkamp JF. 2000. Accumulation and distribution of dietary uranium in lake whitefish (*Coregonus clupeaformis*). Aquatic Toxicology. 48: 477-494.

- 84. Tapia-Rodríguez A, Luna-Velasco A, Field JA, Sierra-Alvarez R. 2012. Toxicity of Uranium to Microbial Communities in Anaerobic Biofilms. Water, Air and Soil Pollution. 1-10.
- Premuzic ET, Francis AJ, Lin M, Schubert J. 1985. Induced formation of chelating agents by *Pseudomonas aeruginosa* grown in presence of thorium and uranium. Archives of Environmental Contamination and Toxicology. 14: 759-768.
- VanEngelen MR, Field EK, Gerlach R, Lee BD, Apel WA, Peyton BM. 2010. UO₂²⁺ speciation determines uranium toxicity and bioaccumulation in an environmental *Pseudomonas* sp. isolate. Environmental Toxicology and Chemistry. 29: 763-769.
- Tuovinen OH, Kelly DP. 1974. Studies on the growth of *Thiobacillus ferrooxidans*. II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA. Archives of Microbiology. 95: 153-164.
- 88. Norberg AB, Molin N. 1983. Toxicity of cadmium, cobalt, uranium and zinc to *Zoogloea ramigera*. Water Research. 17: 1333-1336.
- 89. Charles AL, Markich SJ, Stauber JL, De Filippis LF. 2002. The effect of water hardness on the toxicity of uranium to a tropical freshwater alga (*Chlorella* sp.). Aquatic Toxicology. 60: 61-73.
- Franklin NM, Stauber JL, Markich SJ, Lim RP. 2000. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (*Chlorella* sp.). Aquatic Toxicology. 48: 275-289.
- 91. Hogan AC, Van Dam RA, Markich SJ, Camilleri C. 2005. Chronic toxicity of uranium to a tropical green alga (*Chlorella* sp.) in natural waters and the influence of dissolved organic carbon. Aquatic Toxicology. 75: 343-353.
- Gagnaire B, Boyer P, Bonzom JM, Lecomte-Pradines C, Simon O, Gilbin R. 2011. Transfer modelling and toxicity evaluation of the effluent from an installation of cleansing and uranium recovery using a battery of bioassays. Ecotoxicology. 20: 187-201.
- 93. Trenfield MA, Ng JC, Noller B, Markich SJ, Van Dam RA. 2012. Dissolved organic carbon reduces uranium toxicity to the unicellular eukaryote *Euglena gracilis*. Ecotoxicology. 21: 1013-1023.
- 94. Vinot H, Larpent JP. 1984. Water pollution by uranium ore treatment works. Hydrobiologia. 112: 125-129.
- 95. Charles AL, Markich SJ, Ralph P. 2006. Toxicity of uranium and copper individually, and in combination, to a tropical freshwater macrophyte (*Lemna aequinoctialis*). Chemosphere. 62: 1224-1233.
- 96. Hogan AC, Van Dam RA, Houston MA, Harford AJ, Nou S. 2010. Uranium exposure to the tropical duckweed *Lemna aequinoctialis* and Pulmonate snail *Amerianna cumingi*: Fate and toxicity. Archives of Environmental Contamination and Toxicology. 59: 204-215.
- 97. Mkandawire M, Vogel K, Taubert B, Dudel EG. 2007. Phosphate regulates uranium(VI) toxicity to *Lemna gibba* L. G3. Environmental Toxicology. 22: 9-16.
- 98. Riethmuller N, Markich SJ, Van Dam RA, Parry D. 2001. Effects of water hardness and alkalinity on the toxicity of uranium to a tropical freshwater hydra (*Hydra viridissima*). Biomarkers. 6: 45-51.
- 99. Markich SJ, Camilleri C. 1997. Investigation of metal toxicity to tropical biota Recommendations for revision of the Australian water quality guidelines. Barton, Australia: Supervising Scientist. Report no. 127.
- Jiang GCT, Hughes S, Stürzenbaum SR, Evje L, Syversen T, Aschner M. 2009. *Caenorhabditis elegans metallothioneins* protect against toxicity induced by depleted uranium. Toxicological Sciences. 111: 345-354.

- 101. Ribera D, Labrot F, Tisnerat G, Narbonne JF. 1996. Uranium in the environment: occurrence, transfer, and biological effects. Reviews of environmental contamination and toxicology. 146: 53-89.
- 102. Fournier E, Tran D, Denison F, Massabuau JC, Garnier-Laplace J. 2004. Valve closure response to uranium exposure for a freshwater bivalve (*Corbicula fluminea*): Quantification of the influence of pH. Environmental Toxicology and Chemistry. 23: 1108-1114.
- 103. Tran D, Massabuau JC, Garnier-Laplace J. 2008. Impact of hypoxia on hemolymph contamination by uranium in an aquatic animal, the freshwater clam *Corbicula fluminea*. Environmental Pollution. 156: 821-826.
- 104. Markich SJ, Brown PL, Jeffree RA, Lim RP. 2000. Valve movement responses of *Velesunio angasi* (*Bivalvia*: *Hyriidae*) to manganese and uranium: An exception to the free ion activity model. Aquatic Toxicology. 51: 155-175.
- Markich SJ. 2003. Influence of body size and gender on valve movement responses of a freshwater bivalve to uranium. Environmental Toxicology. 18: 126-136.
- 106. Khangarot BS. 1991. Toxicity of metals to a freshwater tubificid worm, *Tubifex tubifex* (Muller). Bulletin of Environmental Contamination and Toxicology. 46: 906-912.
- Pickett JB, Specht WL, Keyes WL. 1993. Acite and chronic toxicity of uraniuim compounds to *Ceriodaphnia-Daphnia dubia* (U). Aiken, USA: Westinghouse Savannah River Company. Report no. WSRC-RP-92-995.
- 108. Kuhne WW, Caldwell CA, Gould WR, Fresquez PR, Finger S. 2002. Effects of depleted uranium on the health and survival of *Ceriodaphnia dubia* and *Hyalella azteca*. Environmental Toxicology and Chemistry. 21: 2198-2203.
- 109. Khangarot BS, Das S. 2009. Acute toxicity of metals and reference toxicants to a freshwater ostracod, *Cypris subglobosa* Sowerby, 1840 and correlation to EC50 values of other test models. Journal of Hazardous Materials. 172: 641-649.
- 110. Bywater JF, Banaczkowski R, Bailey M. 1991. Sensitivity to uranium of six species of tropical freshwater fishes and four species of cladocerans from Northern Australia. Environmental Toxicology and Chemistry. 10: 1449-1458.
- 111. Barata C, Baird DJ, Markich SJ. 1998. Influence of genetic and environmental factors on the tolerance of *Daphnia magna* Straus to essential and non-essential metals. Aquatic Toxicology. 42: 115-137.
- 112. Nendza M. 2003. Entwicklung von Umweltqualitätsnormen zum Schutz aquatischer Biota in berflächengewässern. Luhnstedt, Germany: Analytisches Laboratorium für Umweltuntersuchungen und Auftragsforschung Bestimmung und Bewertung von Umweltdaten.
- 113. Bringmann G, Kuhn R. 1959. Vergleichende wasser-toxikologische Untersuchungen an Bakterien, Algen und Kleinkrebsen. Gesundheits-Ingenieur. 80: 115-120.
- 114. Zeman FA, Gilbin R, Alonzo F, Lecomte-Pradines C, Garnier-Laplace J, Aliaume C. 2008. Effects of waterborne uranium on survival, growth, reproduction and physiological processes of the freshwater cladoceran *Daphnia magna*. Aquatic Toxicology. 86: 370-378.
- 115. Liber K, Doig LE, White-Sobey SL. 2011. Toxicity of uranium, molybdenum, nickel, and arsenic to *Hyalella azteca* and *Chironomus dilutus* in water-only and spiked-sediment toxicity tests. Ecotoxicology and Environmental Safety. 74: 1171-1179.
- 116. Hyne RV, Padovan A, Parry DL, Renaud SM. 1993. Increased fecundity of the cladoceran *Moinodaphnia macleayi* on a diet supplemented with a

green alga, and its use in uranium toxicity tests. Australian Journal of Marine & Freshwater Research. 44: 389-399.

- 117. Semaan M, Holdway DA, Van Dam RA. 2001. Comparative sensitivity of three populations of the cladoceran *Moinodaphnia macleayi* to acute and chronic uranium exposure. Environmental Toxicology. 16: 365-376.
- 118. Peck MR, Klessa DA, Baird DJ. 2002. A tropical sediment toxicity test using the dipteran *Chironomus crassiforceps* to test metal bioavailability with sediment pH change in tropical acid-sulfate sediments. Environmental Toxicology and Chemistry. 21: 720-728.
- Hamilton SJ, Buhl KJ. 1997. Hazard evaluation of inorganics, singly and in mixtures, to flannelmouth sucker *Catostomus latipinnis* in the San Juan River, New Mexico. Ecotoxicology and Environmental Safety. 38: 296-308.
- Keklak MM, Newman MC, Mulvey M. 1994. Enhanced uranium tolerance of an exposed population of the eastern mosquitofish (*Gambusia holbrooki* girard 1859). Archives of Environmental Contamination and Toxicology. 27: 20-24.
- 121. Hamilton SJ. 1995. Hazard assessment of inorganics to three endangered fish in the Green River, Utah. Ecotoxicology and Environmental Safety. 30: 134-142.
- 122. Holdway DA. 1992. Uranium toxicity to two species of Australian tropical fish. Science of the Total Environment. 125: 137-158.
- 123. Riethmuller N, Markich SJ, Parry D, Van Dam RA. 2000. The effect of true water hardness and alkalinity on the toxicity of Cu and U to twp tropical Australian freshwater organisms. Darwin: Supervisiing Scientist. Report no. 155.
- 124. Tarzwell CM, Henderson C. 1960. Toxicity of less common metals to fishes. Industrial Wastes. 5: 12.
- Sani RK, Peyton BM, Dohnalkova A. 2006. Toxic effects of uranium on Desulfovibrio desulfuricans G20. Environmental Toxicology and Chemistry. 25: 1231-1238.
- 126. Bencheikh-Latmani R, Leckie JO. 2003. Association of uranyl with the cell wall of *Pseudomonas fluorescens* inhibits metabolism. Geochimica et Cosmochimica Acta. 67: 4057-4066.
- 127. Bringmann G, Kuhn R. 1960. Vergleichende toxicologische Befunde an Wasser-Bakterien. Gesundheits-Ingenieur. 81: 337-340.
- 128. Tuovinen OH, Kelly DP. 1974. Studies on the growth of *Thiobacillus ferrooxidans* III. Influence of uranium, other metal ions and 2:4dinitrophenol on ferrous iron oxidation and carbon dioxide fixation by cell suspensions. Archives of Microbiology. 95: 165-180.
- 129. Singh RN, Subbaramaiah K. 1970. Effects of chemicals on *Fischerella muscicola* (Thuret) Gom. Canadian Journal of Microbiology. 16: 193-199.
- 130. Bringmann G, Kuhn R. 1959. Wasser-toxicologische Untesuchungen mit Protozoen als Testorganismen. Gesundheits-Ingenieur. 80: 239-242.
- Mkandawire M, Taubert B, Dudel EG. 2004. Capacity of *Lemna gibba* L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. International Journal of Phytoremediation. 6: 347-362.
- 132. Mkandawire M, Taubert B, Dudel EG. 2006. Limitations of growthparameters in *Lemna gibba* bioassays for arsenic and uranium under variable phosphate availability. Ecotoxicology and Environmental Safety. 65: 118-128.
- 133. Sakamoto F, Ohnuki T, Kozai N, Wakai E, Fujii T, Iefuji H, Francis AJ. 2005. Effect of uranium (VI) on the growth of yeast and influence of metabolism of yeast on adsorption of U (VI). Journal of Nuclear and Radiochemical Sciences. 6: 99-101.

- 134. Hyne RV, Rippon GD, White J, Ellender G. 1992. Accumulation of uranium by freshwater hydra into discharged nematocysts. Aquatic Toxicology. 23: 231-246.
- 135. Hyne RV, Rippon GD, Ellender G. 1992. pH-Dependent uranium toxicity to freshwater hydra. Science of the Total Environment. 125: 159-173.
- 136. Massarin S, Alonzo F, Garcia-Sanchez L, Gilbin R, Garnier-Laplace J, Poggiale JC. 2010. Effects of chronic uranium exposure on life history and physiology of *Daphnia magna* over three successive generations. Aquatic Toxicology. 99: 309-319.
- 137. Borgmann U, Couillard Y, Doyle P, Dixon DG. 2005. Toxicity of sixty-three metals and metalloids to *Hyalella azteca* at two levels of water hardness. Environmental Toxicology and Chemistry. 24: 641-652.
- 138. Alves LC, Borgmann U, Dixon DG. 2009. Kinetics of uranium uptake in soft water and the effect of body size, bioaccumulation and toxicity to *Hyalella azteca*. Environmental Pollution. 157: 2239-2247.
- 139. Muscatello JR, Liber K. 2009. Accumulation and chronic toxicity of uranium over different life stages of the aquatic invertebrate *Chironomus tentans*. Archives of Environmental Contamination and Toxicology. 57: 531-539.
- 140. Dias V, Vasseur C, Bonzom JM. 2008. Exposure of *Chironomus riparius* larvae to uranium: Effects on survival, development time, growth, and mouthpart deformities. Chemosphere. 71: 574-581.
- Liber K, Stoughton S, Rosaasen A. 2004. Chronic uranium toxicity to white sucker fry (*Catostomus commersoni*). Bulletin of Environmental Contamination and Toxicology. 73: 1065-1071.
- 142. Mitchell SE, Caldwell CA, Gonzales G, Gould WR, Arimoto R. 2005. Effects of depleted uranium on survival, growth, and metamorphosis in the african clawed frog (*Xenopus laevis*). Journal of Toxicology and Environmental Health Part A. 68: 951-956.
- 143. Ahsanullah M, Williams AR. 1986. Effect of uranium on growth and reproduction of the marine amphipod *Allorchestes compressa*. Marine Biology. 93: 459-464.
- 144. Deheyn DD, Bencheikh-Latmani R, Latz MI. 2004. Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. Environmental Toxicology. 19: 161-178.
- 145. Arnault E, Doussau M, Pesty A, Gouget B, Van der Meeren A, Fouchet P, Lefèvre B. 2008. Natural uranium disturbs mouse folliculogenesis in vivo and oocyte meiosis in vitro. Toxicology. 247: 80-87.
- 146. Domingo JL, Paternain JL, Llobet JM, Corbella J. 1989. The developmental toxicity of uranium in mice. Toxicology. 55: 143-152.
- Feugier A, Frelon S, Gourmelon P, Claraz M. 2008. Alteration of mouse oocyte quality after a subchronic exposure to depleted Uranium. Reproductive Toxicology. 26: 273-277.
- 148. Kundt MS, Martinez-Taibo C, Muhlmann MC, Furnari JC. 2009. Uranium in drinking water: Effects on mouse oocyte quality. Health Physics. 96: 568-574.
- 149. Llobet JM, Sirvent JJ, Ortega A, Domingo JL. 1991. Influence of chronic exposure to uranium on male reproduction in mice. Fundamental and Applied Toxicology. 16: 821-829.
- 150. Paternain JL, Domingo JL, Ortega A, Llobet JM. 1989. The effects of uranium on reproduction, gestation, and postnatal survival in mice. Ecotoxicology and Environmental Safety. 17: 291-296.
- 151. Raymond-Whish S, Mayer LP, O'Neal T, Martinez A, Sellers MA, Christian PJ, Marion SL, Begay C, Propper CR, Hoyer PB, Dyer CA. 2007. Drinking water with uranium below the U.S. EPA water standard causes estrogen

receptor-dependent responses in female mice. Environmental health perspectives. 115: 1711-1716.

- 152. Tannenbaum A, Silverstone H. 1951. Some aspects of the toxicology of uranium compounds. IN Tannenbaum A (Ed.) Toxicology of uranium. New York, McGraw-Hill book company, Inc.
- 153. Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Valli VE, Moss MA. 1998. Uranyl nitrate: 91-day toxicity studies in the New Zealand white rabbit. Toxicological Sciences. 41: 129-137.
- 154. Gilman AP, Moss MA, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Long G, Valli VE. 1998. Uranyl nitrate: 91-day exposure and recovery studies in the male New Zealand white rabbit. Toxicological Sciences. 41: 138-151.
- 155. Albina ML, Bellés M, Linares V, Sánchez DJ, Domingo JL. 2005. Restraint stress does not enhance the uranium-induced developmental and behavioral effects in the offspring of uranium-exposed male rats. Toxicology. 215: 69-79.
- 156. Briner W, Murray J. 2005. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicology and Teratology. 27: 135-144.
- 157. Bussy C, Lestaevel P, Dhieux B, Amourette C, Paquet F, Gourmelon P, Houpert P. 2006. Chronic ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine metabolism in male rat brain. NeuroToxicology. 27: 245-252.
- 158. Grignard E, Guéguen Y, Grison S, Lobaccaro JMA, Gourmelon P, Souidi M. 2008. Contamination with depleted or enriched uranium differently affects steroidogenesis metabolism in rat. International Journal of Toxicology. 27: 323-328.
- 159. Linares V, Albina ML, Bellés M, Mayayo E, Sánchez DJ, Domingo JL. 2005. Combined action of uranium and stress in the rat: II. Effects on male reproduction. Toxicology Letters. 158: 186-195.
- Malenchenko AF, Barkun NA, Guseva GF. 1978. Effect of uranium on the induction and course of experimental autoimmune orchitis and thyroiditis. Journal of Hygiene Epidemiology Microbiology and Immunology. 22: 268-277.
- 161. Ortega A, Domingo JL, Llobet JM, Tomas JM, Paternain JL. 1989. Evaluation of the oral toxicity of uranium in a 4-week drinking-water study in rats. Bulletin of Environmental Contamination and Toxicology. 42: 935-941.
- 162. Sánchez DJ, Bellés M, Albina ML, Gómez M, Linares V, Domingo JL. 2006. Exposure of pregnant rats to uranium and restraint stress: Effects on postnatal development and behavior of the offspring. Toxicology. 228: 323-332.
- Haseltine SD, Sileo L. 1983. Response of american black ducks to dietary uranium: Aproposed substitute for lead shot. Journal of Wildlife Management. 47: 1124-1129.

Appendix 1 - SCOPUS search profile

((TITLE-ABS-KEY(ec50* OR ec20* OR ec10* OR lc50* OR lc20* OR lc10* OR noec* OR loec* OR matc OR tlm OR chv OR ecx OR bioassay*)) AND (TITLE-ABS-KEY(uranium OR uraniumoxide OR uraniumdioxide OR uranyl* OR "bis(acetato-O)dioxouranium" OR "bis(nitrato-O)dioxouranium") OR CASREGNUMBER(7440-61-1 OR 1344-57-6 OR 541-09-3 OR 10102-06-4))) OR ((TITLE-ABS-KEY(bioassay* OR mortalit* OR phytotox* OR reproduct* OR lethal* OR growth OR teratogen*)) AND (TITLE-ABS-KEY(uranium OR uraniumoxide OR uraniumdioxide OR uranyl* OR "bis(acetato-O)dioxouranium" OR "bis(nitrato-O)dioxouranium") OR CASREGNUMBER(7440-61-1 OR 1344-57-6 OR 541-09-3 OR 10102-06-4)))

Appendix 2 - Data on bioaccumulation

Legend to data tables	Species
	properties
A	Test water analysed Yes/No
Test type	S = static; R = renewal; F = flow-through
Test water	am = artificial medium; dtw = dechlorinated tap water; dw = de-ionised/dechlorinated/distilled water; nw = natural water; rw = reconstituted (sea)water; rtw =
	reconstituted tap water; tw = tap water
Ri	Reliability index, see section 2.2

Table A2.1 Bioaccumulation factors for aquatic organisms

Species	Species properties	Test substance	Analysis	Sampling area	Sampling period	рН	Hardness T [mg [°C]	Exposure conc.	Exposure type	BAF [l/kg _{w.w.}]	BAF type	Notes	Ri Ref.
Fish							Caco5/1]	[[[]]					
Arius leptaspis	Fork-tailed catfish	238U	alpha spectrometry	Georgetown billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85 monthly	near neutral		0.76	dissolved U	0.85	whole body, ww	1,3	2 [24]
Arius leptaspis	Fork-tailed catfish	238U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85 monthly	near neutral		0.037	dissolved U	41	whole body, ww	1,2	2 [24]
Arius leptaspis	Fork-tailed catfish	234U	alpha spectrometry	Georgetown billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85 monthly	near neutral		0.76	dissolved U	1.0	whole body, ww	1,3	2 [24]
Arius leptaspis	Fork-tailed catfish	234U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85 monthly	near neutral		0.037	dissolved U	25	whole body, ww	1,2	2 [24]
Catostomus catostomus			fluorescence	Okanagan Highlands, Central British Columbia, Canada	July			340	dissolved U	14.7	flesh, ww	25	4 [64]
Catostomus catostomus	Longnose sucker	Uranium	fluorescence	Tailings system site 2 in Beaverlodge Lake area, Saskatchewam, Canada	13-25 July '79			3000	total U	0.3	whole body, ww	4,5	2 [25]
Catostomus catostomus	Longnose sucker	Uranium	fluorescence	Fulton lake in Beaverlodge Lake area, Saskatchewam, Canada	13-25 July '79			5.2	total U	6.9	whole body, ww	4,6	2 [25]
Catostomus catostomus	Longnose sucker	Uranium		Wollaston Lake						25 - 181	tissue	7	4 [65]
Catostomus commersor	ni garara a	Uranium	neutron activation	Tailings Creek Mouth	1982	7.9	81	300	total U	8.9	whole body, ww		2 [26]
Catostomus commersor	ni	Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56	1.2	total U	33	skin, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56	1.2	total U	8	flesh, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56	1.2	total U	117	bone, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56	1.2	total U	2950	stomach, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56	1.2	total U	133	liver, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56	1.2	total U	8	gonad, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79	338	total U	9	skin, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79	338	total U	0.2	flesh, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79	338	total U	40	bone, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79	338	total U	254	stomach, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79	338	total U	6	liver, ww		3 [26]
Catostomus commersor	ni	Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79	338	total U	2	gonad, ww		3 [26]
Catostomus commersor	i White sucker	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79			267	total U	13	whole body, ww	4,5	2 [25]
Catostomus commersor	i White sucker	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79			267	total U	17	whole body, ww	4,5	2 [25]
Catostomus commersor	i White sucker	Uranium	fluorescence	Mouth of ace creek in Beaverlodge Lake area, Saskatchewam, Canada	13-25 July '79			210	total U	24	whole body, ww	4,5	2 [25]
Catostomus commersor	i White sucker	Uranium	fluorescence	Tailings system site 1 in Beaverlodge Lake area, Saskatchewam, Canada	13-25 July '79			2916	total U	0.2	whole body, ww	4,5	2 [25]

Species	Species	Tect	Analysis	Sampling area	Sampling	nH	Hardness T F	vpocure	Exposure	BAE	BAE type	Notes	Di Dof
Species	properties	substance	Allalysis	Sampling area	neriod	рп		onc	type	[]/ka]	ва суре	NOLES	KI KEI.
	properties	Substance			period		CaCO3/I1 [ua/L1	type	[I/ Kgw.w.]			
Catostomus commersoni	White sucker	Uranium		Lake Beaverlodge				- 37 - 3		4.2 - 7.7	tissue	7	4 [65]
Catostomus commersoni	White sucker	Uranium		Wollaston Lake						4.4 - 6.3	tissue	7	4 [65]
Coregonus artedii	Cisco	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79		2	267	total U	2	whole body, ww	4.5	2 [25]
Coregonus clupeaformis		Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56 1	1.2	total U	83	skin, ww	.,-	3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56 1	1.2	total U	5	flesh, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56 1	1.2	total U	458	bone, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56 1	.2	total U	1583	stomach, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56 1	L.2	total U	133	liver, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Lake Milliken	1982	7.5-7.6	56 1	1.2	total U	50	gonad, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79 3	338	total U	6	skin, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79 3	338	total U	0.2	flesh, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79 3	338	total U	39	bone, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79 3	338	total U	488	stomach, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79 3	338	total U	11	liver, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Beaverlodge lake	1982	7.8-7.9	79 3	338	total U	1	gonad, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Fredette Lake		7.5-7.6	44 3	3.25	total U	77	skin, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Fredette Lake		7.5-7.6	44 3	3.25	total U	3	flesh, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Fredette Lake		7.5-7.6	44 3	3.25	total U	335	bone, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Fredette Lake		7.5-7.6	44 3	3.25	total U	5551	stomach, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Fredette Lake		7.5-7.6	44 3	3.25	total U	231	liver, ww		3 [26]
Coregonus clupeaformis		Uranium	neutron activation	Fredette Lake		7.5-7.6	44 3	3.25	total U	129	gonad, ww		3 [26]
Coregonus clupeaformis	lake white fish	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79		2	267	total U	4	whole body, ww	4,5	2 [25]
Coregonus clupeaformis	Lake white fish	Uranium		St Mary's Channel, Back Bay and Langley Bay of Lake Athabasca						56 - 122	tissue	7	4 [65]
Coregonus clupeaformis	Lake white fish	Uranium		Lakes near Elliot Lake. Ontario						30 - 559	tissue	7	4 [65]
Coregonus clupeaformis	Lake white fish	Uranium		Lake Beaverlodge						3.3 - 50	tissue	7	4 [65]
Couesius nlumbeus		Uranium	neutron activation	Tailings Creek Mouth	1982	7.9	81 3	300	total U	6.6	whole body, ww	•	2 [26]
		Uranium	neutron activation	Beaverlodge Lake	1982	7.8-7.9	79 3	338	total U	1.8	whole body, ww		2 [26]
Couesius plumbeus	Lake chub	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79	110 115	2	267	total U	2	whole body, ww	4.5	2 [25]
Couesius plumbeus	Lake chub	Uranium	fluorescence	Mouth of ace creek in Beaverlodge Lake area, Saskatchewam, Canada	13-25 July '79		2	210	total U	4	whole body, ww	4,5	2 [25]
Couesius plumbeus	Lake chub	Uranium	fluorescence	Tailings system site 1 in Beaverlodge Lake	13-25 July '79		2	2916	total U	0.5	whole body, ww	4,5	2 [25]
Couesius nlumbeus	Lake chub	Uranium		Lake Beaverlodge						03-16	tissue	7	4 [65]
Esox lucius	Northern pike	Uranium		St Mary's Channel, Back Bay and Langley Bay						0.79 -	tissue	7	4 [65]
Esox lucius	Northern pike	Uranium		Lake Beaverlodge						1.2 - 1.6	tissue	7	4 [65]
Esox lucius	Northern pike	Uranium		Wollaston Lake						75-40	tissue	7	4 [65]
Fish	Clupea harengus, Gadus morhua, Pleuronectes flesus,	238U	electroplating/alpha spectr.	Southern Baltic Sea	1980-1991		0).68-0.85	total U	1.3	whole body	8	3 [66- 68]
Fish	Sprattus sprattus Clupea harengus, Gadus morhua, Pleuronectes flesus,	238U	electroplating/alpha spectr.	Southern Baltic Sea	1980-1991		0).68-0.85	total U	0.4	muscle, ww	8	3 [67,68]
Fish	Sprattus sprattus Clupea harengus, Gadus morhua, Pleuronectes flesus,	238U	electroplating/alpha spectr.	Southern Baltic Sea	1980-1991		0).68-0.85	total U	7.6	viscera	8	3 [67,68]
	Sprattus sprattus												
Fish										0.1-38	flesh, ww	9	4 [69]
Fish										2-800	bone, ww	9	4 [69]
Fish										0.4-150	liver, ww	9	4 [69]
Fish										0.4-150	skin, ww	9	4 [69]
Fish										0.1-38	whole body, ww	9	4 [69]
Fish		Uranium	fluoresc. (water); neutron act. (biota)	Kreminiscica stream below confluence with streams from the tip	1980		2	2.2	total U	0.7	whole body, ww		4 [70]
Fish		Uranium	fluoresc. (water); neutron act. (biota)	Brebovscica above confluence with mine water	1980		4	1.7	total U	1.3	whole body, ww		4 [70]

Species	Species	Test	Analysis	Sampling area	Sampling	pН	Hardness T	Exposure	Exposure	BAF	BAF type	Notes	Ri Ref.
·	properties	substance			period	•	[mg [°C] (CaCO3/I]	conc. [μg/L]	type	[l/kg _{w.w.}]			
Fish		Uranium	fluoresc. (water); neutron act. (biota)	Brebovscica below confluence with mine water	1980			12.5	total U	1.6	whole body, ww		4 [70]
Fish		Uranium	fluoresc. (water); neutron act. (biota)	Sava above Hrastnik	1980		(0.77	total U	2.3	whole body, ww		4 [70]
Fish		Uranium	fluoresc. (water); neutron act. (biota)	Sava below Hrastnik	1980		:	1.14	total U	38	whole body, ww		4 [70]
Fish		Uranium	fluoresc. (water); neutron act. (biota)	Boben below chem. Factory	1980			1.22	total U	0.9	whole body, ww		4 [70]
Fish		Uranium		two locations in Sweden	1979-1981					20-270	flesh	10	3 [71]
Fish		Uranium		two locations in Sweden	1979-1981					100-2500) liver	10	3 [71]
Fish		Uranium		two locations in Sweden	1979-1981					300-6000) bone	10	3 [71]
Fish		238U, 234U		Alligator rivers region		4.5-6.5				140			4 [72]
Fish group 1	Nematalosa erebi, Oxyeleotris lineolatus		alpha spectrometry	Alligator River Region, Northern Territory, Australia	'84-'85, monthly	near neutral	(0.037- 0.76	dissolved U	250	whole body, ww		4 [24]
Fish group 2	Arius leptaspis, Lates		alpha spectrometry	Alligator River Region, Northern Territory,	'84-'85,	near	(0.037-	dissolved U	15	whole body, ww		4 [24]
	calcarifer, Strongylura kreffti, Megalops cyprinoides			Australia	monthly	neutral	(0.76					
Lates calcarifer	Barramundi	238U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85, monthly	near neutral	(0.037	dissolved U	48	whole body, ww	1,2	2 [24]
Lates calcarifer	Barramundi	234U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator	'84-'85,	near	(0.037	dissolved U	36	whole body, ww	1,2	2 [24]
				River Region, Northern Territory, Australia	monthly	neutral						-	
Megalops cyprinoides	Tarpon	238U	alpha spectrometry	Gunirdul billabong, Cooper Creek, Alligator River Region, Northern Territory, Australia	'84-'85, monthly	near neutral	(0.052	dissolved U	7.8	whole body, ww	1,2	2 [24]
Megalops cyprinoides	Tarpon	234U	alpha spectrometry	Gunirdul billabong, Cooper Creek, Alligator River Region, Northern Territory, Australia	'84-'85, monthly	near neutral	(0.052	dissolved U	7.1	whole body, ww	1,2	2 [24]
Nematalosa erebi	Bony bream	238U	alpha spectrometry	Georgetown billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85, monthly	near neutral	(0.76	dissolved U	27	whole body, ww	1,3	2 [24]
Nematalosa erebi	Bony bream	238U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85,	near	(0.037	dissolved U	261	whole body, ww	1,3	2 [24]
Nematalosa erebi	Bony bream	238U	alpha spectrometry	Gunirdul billabong, Cooper Creek, Alligator River Region, Northern Territory, Australia	'84-'85,	near	(0.052	dissolved U	203	whole body, ww	1,2	2 [24]
Nematalosa erebi	Bony bream	234U	alpha spectrometry	Georgetown billabong, Magela Creek, Alligator	'84-'85,	near	(0.76	dissolved U	27	whole body, ww	1,3	2 [24]
Nematalosa erebi	Bony bream	234U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator	'84-'85,	near	(0.037	dissolved U	194	whole body, ww	1,3	2 [24]
Nematalosa erebi	Bony bream	234U	alpha spectrometry	Gunirdul billaborg, Cooper Creek, Alligator	'84-'85,	near	(0.052	dissolved U	224	whole body, ww	1,2	2 [24]
Notropis hudsonius	Spottail shiner	Uranium	fluorescence	Beaverlodge Lake Saskatchewam Canada	13-25 July '79	neutrai		267	total II	5	whole body ww	45	2 [25]
Notropis hudsonius	Spottail shiner	Uranium	fluorescence	Mouth of ace creek in Beaverlodge Lake area, Saskatchewam Canada	13-25 July '79			210	total U	3	whole body, ww	4,5	2 [25]
Oncorhynchus mykiss			fluorescence	Okanagan Highlands, Central British Columbia, Canada			:	340	dissolved U	14.7	flesh, ww	25	4 [64]
Oxyeleotris lineolatus	Sleepy cod	238U	alpha spectrometry	Gunirdul billabong, Cooper Creek, Alligator	'84-'85, monthly	near	(0.052	dissolved U	45	whole body, ww	1,2	2 [24]
Oxyeleotris lineolatus	Sleepy cod	234U	alpha spectrometry	Gunirdul billaborg, Cooper Creek, Alligator	'84-'85,	near	(0.052	dissolved U	47	whole body, ww	1,2	2 [24]
Percopsis omiscomavcus	Trout-perch	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79	neatral		267	total U	2	whole body, ww	4.5	2 [25]
Prosopium cylindraceum	Round whitefish	Uranium	fluorescence	Fulton lake in Beaverlodge Lake area,	13-25 July '79			5.2	total U	10.9	whole body, ww	4,6	2 [25]
Punaitius punaitius	Nine-spine stickleback	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79			267	total U	1	whole body ww	4.5	2 [25]
Salmo trutta	Brown trout	Uranium	tissue radioact. conv.	Marshall Creek upstream of indian creek	05-May-'81			1		5.9	whole body	11	3 [27]
Salmo trutta	Brown trout	Uranium	tissue radioact. conv.	Marshall Creek downstream of indian creek	one year, '81		(60		1.5	whole body	12	2 [27]
Salmo trutta	Brown trout	Uranium	tissue radioact. conv.	Tomichi Creek upstream of Marshall creek	05-May-'81		:	2		0.08	whole body	11	3 [27]
			to o conc.	Gunnison National Forest, Colorado, USA									

properties minimate output properties minimate output properties minimate output	Species	Species	Test	Analysis	Sampling area	Sampling	nH	Hardness T	Evnosure	Exposure	BAE	BAE type	Notes	Ri Ref	-
Descent of the month to construct of the month of cock descent/room of Marshell creek Gate Marshell creek	Species	properties	substance		Sumpling area	period	pri	Ima I°C	conc.	type	[]/ka	Dra type	Notes	ta tteri	
Same braid Brow hoad Umain tisse realized convertient of Manual creek GPA Part 1 Space Part 1 <		properties	oubotunee			pened		CaCO3/I]	[µg/L]	0,00	[17.1.9w.w.]				
Label product In Jonne, Generation National Fortuni, Clorende, Clorende, J. Clorende, J. Series Jack Product Jack Product <td>Salmo trutta</td> <td>Brown trout</td> <td>Uranium</td> <td>tissue radioact. conv.</td> <td>Tomichi Creek downstream of Marshall creek</td> <td>05-May-'81</td> <td></td> <td><i>i</i> -</td> <td>9</td> <td></td> <td>0.33</td> <td>whole body</td> <td>11</td> <td>3 [27]</td> <td>-</td>	Salmo trutta	Brown trout	Uranium	tissue radioact. conv.	Tomichi Creek downstream of Marshall creek	05-May-'81		<i>i</i> -	9		0.33	whole body	11	3 [27]	-
Sale definition Control Usardian CP-HS Occur Labor Occur Labor Distance Distance <thdistance< th=""> Distance Distance</thdistance<>				to U conc.	Gunnison National Forest, Colorado, USA										
Solutions conversion Umail CP-MS Metalon 4 Install 2 Jobs Arr 3 4 1/3 Solutions conversion Uranium Chen State 1 Intol Like, (C, Canada 1	Salvelinus namaycush		Uranium	ICP-MS	Quirke Lake, ON, Canada				13	total U	167	bone, ww	13	4 [73]	
Same multiplication Unstand Lors Witzery Lake, byt, Landard Jb South U Ja Other, W Ja Ja Ja Ja Direct, W Ja <	Salvelinus namaycush		Uranium	ICP-MS	McCabe Lake, ON, Canada				3	total U	27	bone, ww	13	4 [73]	
Selection nature constraints of the true is the fract of the constraint is a selection in the constraint is the fract of th	Salvelinus namaycush		Uranium	ICP-MS	Whiskey Lake, ON, Canada				35	total U	31	bone, ww	13	4 [73]	
Sameline number cols Lake tradit Touling Lake start light Lake, Orthon 11 - 18 Issue 7 4 163 Sameline number cols Base tradit Lake, Sask Starkersem, Chenda 13 - 25 Jul / 79 267 104 Jul - 4.4 while body, ww 4.6 2 (25) Sameline number cols Base tradit Lake, Sask Starkersem, Chenda 13 - 25 Jul / 79 52.7 boal U 1.4 while body, ww 4.6 2 (25) Sameline number cols Lang tom 238U alpha spectrometry Kever Region, Northern Territory, Australia menthy neutral 0.017 dissolved U 1.4 while body, ww 1.3 2 [24] Stronglytica kreffit Lang tom 234U alpha spectrometry Regregation billiborg, Regregation billib	Salvelinus namaycush		Uranium	ICP-MS	Elliot Lake, ON, Canada				1	total U	101	bone, ww	13	4 [73]	
Samething multiply in the Best Profile Link Be	Salvelinus namaycush	Lake trout	Uranium		Lakes near Elliot Lake, Ontario						17 - 48	tissue	7	4 [65]	
Salestins Backetins Backetins <t< td=""><td>Salvelinus namaycush</td><td>Lake trout</td><td>Uranium</td><td>~</td><td>Lake Beaverlodge</td><td></td><td></td><td></td><td></td><td></td><td>1.2 - 3.4</td><td>tissue</td><td>7</td><td>4 [65]</td><td></td></t<>	Salvelinus namaycush	Lake trout	Uranium	~	Lake Beaverlodge						1.2 - 3.4	tissue	7	4 [65]	
Same from functionLink from functionLink from functionLink from for the body, weLink from for the body,	Salvenius namaycush	lake trout	Uranium	fluorescence	Beaverlodge Lake, Saskatchewam, Canada	13-25 July '79			267	total U	0.4	whole body, ww	4,5	2 [25]	
Strong/var ker/fit Long tom 2380 alpha spectrometry Georgeboxe billano, Magela Creek, Alligator near 0.76 disolved U 1.4 whole body, wv 1.3 2 24 Strong/var ker/fit Long tom 2380 alpha spectrometry Rouge Region, Northern Terrotry, Australia monthy neatral 0.037 disolved U 1.4 whole body, wv 1.3 2 24 Strong/var ker/fit Long tom 2340 alpha spectrometry Georgeboxe billano, Magela Creek, Alligator Route Region, Northern Terrotry, Matralia monthy neatral 0.037 disolved U 1.4 whole body, wv 1.3 2 24 Strong/var ker/fit Long tom 2340 alpha spectrometry Georgeboxe billano, Magela Creek, Alligator Res. neatral 0.037 disolvel U 1.4 whole body, wv 1.3 2 24 Whitefinh Compone Superformin, Varinia CPMS Michael Creek, Alligator Relator, Check, Alligator, Relator, Check,	Salvenius namaycush	lake trout	Uranium	fluorescence	Fulton lake in Beaverlodge Lake area, Saskatchewam, Canada	13-25 July '79			5.2	total U	3.2	whole body, ww	4,6	2 [25]	
Strong/ura kreffit Long tom 238U alpha spectrometry River Region, Northern Infortory, Australia River Region, Northern River Region, River River River, Northern River Region, River River River, River River River, River River, River River, River River River, River River, River River River, River River, River River, River River River River, Rive	Strongylura kreffti	Long tom	238U	alpha spectrometry	Georgetown billabong, Magela Creek, Alligator River Region, Northern Territory, Australia	'84-'85, monthly	near neutral		0.76	dissolved U	1.4	whole body, ww	1,3	2 [24]	
Strongylura kreffu Long torn 234U alpha spectrometry Comprision bilabong, Megala Crefts near 0.76 dissolved U 1.2 whole body, ww 1.3 2 [24] Strongylura kreffu Long torn 234U alpha spectrometry Mudginberri Bilabong, Magela Crefts monthly neutral 0.76 dissolved U 1.2 whole body, ww 1.3 2 [24] Whitefish Coregonus Clupadroms, Unpadroms, Unpadroms, Vastralia monthly neutral 3 total U 208 bone, ww 1.3 4 [73] Whitefish Coregonus Clupadroms, Unpadroms, Unpadroms, Vastralia monthly neutral 3 total U 208 bone, ww 1.3 4 [73] Whitefish Coregonus Clupadroms, Unpadroms, Unpadrom, Unpadrom, Unpadroms, Unpadroms, Unpadrom, Unpadrom, Unpadroms,	Strongylura kreffti	Long tom	238U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator	'84-'85,	near		0.037	dissolved U	4.3	whole body, ww	1,2	2 [24]	
abord with a therin bord to the program 2-bec applie speculation interfunction interfunction interfunction interfunction interfunction. The strate is speculated interfunction interfunction. The strate is speculated interfunctinterfunctinterex is speculated interfunction. The strate is specul	Strong dura krafti	Long tom	22411	alaba anastromatru	River Region, Northern Territory, Australia		neutrai		0.76	dissolved LL	1.2	whole hady your	1 2	2 [24]	—
Storogylura kraffit Lung tom 234U alpha spectrometry Mudgingent pillaborg, Mogel acres, Alligator '84-85, near peutral near 0.037 dissolved U 5.6 whole body, ww 1,2 2 [24] Whitefsh Coregonus clupeaformis, prospium cylindraeum ICP-MS McCabe Lake, ON, Canada 35 total U 208 bone, ww 13 4 [73] Whitefsh Coregonus clupeaformis, clupeaformis, clupeaformis, Uranium ICP-MS Whiskey Lake, ON, Canada 1 total U 208 bone, ww 13 4 [73] Whitefsh Coregonus clupeaformis, clupeaformis, Uranium ICP-MS Whitefsh Southern Baltic Sea 1980-1991 0.68-0.85 total U 2 muscle, ww 13 4 [73] Whitefsh Coregonus clupeaformis, Uranium ICP-MS Whitefsh Southern Baltic Sea 1980-1991 0.68-0.85 total U 2 muscle, ww 14 3 [67,68] Whitefsh Coregonus clupeaformis, Mytika celuis Southern Baltic Sea 1980-1991 0.68-0.85 total U	Strongylura kreitu	Long tom	2340	alpha spectrometry	River Region Northern Territory Australia	04-05, monthly	neutral		0.76	dissolved 0	1.2	whole body, ww	1,5	Z [Z4]	
Note of an anomal and game Description River Region, Northerm Territory, Australia monthly neutral Northerm Territory, Northerm Territory, Australia Northerm Territory,	Strongylura kreffti	Long tom	234U	alpha spectrometry	Mudginberri billabong, Magela Creek, Alligator	'84-'85	near		0.037	dissolved U	5.6	whole body, ww	1.2	2 [24]	-
Whitefish Coregonus duperformis, Pracepure, cylindraceum Uranium ICP-MS McCabe Lake, ON, Canada 3 total U 208 bone, ww 13 4 [73] Whitefish Coregonus duperformis, Pracepure dupartomis, Coregonus dupartomis, Coregonus dupartomis, Pracepure dupartomis, Pracepure dupartomis, Coregonus dupartomis, Whitefish Uranium ICP-MS Elliot Lake, ON, Canada 35 total U 206 bone, ww 13 4 [73] Whitefish Coregonus dupartomis, Pracepure dupartomis, Pracepu	et engylard it end	20119 2011	2010	aipila opecationical y	River Region, Northern Territory, Australia	monthly	neutral		01007		510		-/-	- []	
Whitefish Coregions duration of the sector 35 total U 206 bone, wu 13 4 [73] Whitefish Coregonus clupedromis, Prosophim of undraceum Unalum ICP-MS Elliot Lake, ON, Canada 1 total U 820 bone, wu 13 4 [73] Whitefish Coregonus clupedromis, Prosophim of undraceum Unalum ICP-MS Whitefish 35 total U 2 muscle, wu 13 4 [73] Whitefish Coregonus clupedromis, Prosophim of undraceum Unalum ICP-MS Elliot Lake, ON, Canada 1 total U 2 muscle, wu 13 4 [73] Whitefish Coregonus clupedromis, Prosophim of undraceum electroplating/alpha spectr. Southern Baltic Sea 1980-1991 0.68-0.85 total U So whole body 14 3 [67,68] Bivalves Astarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytilus edulis Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 14 3 [67,68]	Whitefish	Coregonus clupeaformis, Prosonium cylindraceum	Uranium	ICP-MS	McCabe Lake, ON, Canada				3	total U	208	bone, ww	13	4 [73]	
Prosspilur G/Infraceum Uranium ICP-MS Eliot Lake, ON, Canada 1 total U 8320 bone, ww 13 4 [73] Whitefish Coregoins G/Indiacum Uranium ICP-MS Whitefish 25 total U 2 muscle, ww 13 4 [73] Whitefish Coregoins G/Indiacum Uranium ICP-MS Eliot Lake, ON, Canada 1 total U 24 muscle, ww 13 4 [73] Whitefish Coregoins G/Indiacum Groepoins G/Indiacum Intotal U 24 muscle, ww 13 4 [73] Molace Southern Baltic Sea 1980-1991 0.68-0.85 total U 55 whole body 14 3 [67,68] Bivalves Astarte borealis, Cardium galue 230 electroplating/alpha Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 14 3 [67,68] Bivalves Astarte borealis, Cardium galue 230 electroplating/alpha spectr. 100.68-0.85 </td <td>Whitefish</td> <td>Coregonus clupeaformis,</td> <td>Uranium</td> <td>ICP-MS</td> <td>Whiskey Lake, ON, Canada</td> <td></td> <td></td> <td></td> <td>35</td> <td>total U</td> <td>206</td> <td>bone, ww</td> <td>13</td> <td>4 [73]</td> <td>-</td>	Whitefish	Coregonus clupeaformis,	Uranium	ICP-MS	Whiskey Lake, ON, Canada				35	total U	206	bone, ww	13	4 [73]	-
Writefish Prospin Coregoins cupeatorms, Prospin cylindraceum Uranium ICP-MS Whisey Lake, ON, Canada 1 total U 2 muscle, ww 13 4 [73] Whitefish Prospin cylindraceum Uranium ICP-MS Whisey Lake, ON, Canada 1 total U 2 muscle, ww 13 4 [73] Whitefish Prospin cylindraceum Uranium ICP-MS Elliot Lake, ON, Canada 1 total U 2 muscle, ww 13 4 [73] Moluse Sector Southern Baltic Sea 1980-1991 0.68-0.85 total U 24 muscle, ww 1 55 whole body, ull 3 [67,68] Bivalves Astarte borealis, Cardium glaucum, Macoma balthica, spectr. Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 1 4 7.8 [67,68] Whates Astarte borealis, Cardium glaucum, Macoma balthica, glaucum, Macoma balth		Prosopium cylindraceum		TOP MO							0000		10	4 [70]	
Whitefish Coregonus Cupeaformis, Prospilum Qilindraceum Uranium ICP-MS Whiskey Lake, ON, Canada 35 total U 2 muscle, ww 13 4 [73] Whitefish Coregonus Cupeaformis, Prospilum Qilindraceum Uranium ICP-MS Elliot Lake, ON, Canada 1 total U 24 muscle, ww 13 4 [73] Moliusc Starte borealis, Cardium glacum, Macome balthica, Mya arenaria, Mytilus dulline Southern Baltic Sea 1980-1991 O.68-0.85 total U 82 soft itssue 14 3 6[7,68] Bivalves Astarte borealis, Cardium glacum, Macome balthica, Mya arenaria, Mytilus dullis Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft itssue 14 3 [67,68] Bivalves Astarte borealis, Cardium glaucum, Macome balthica, Mya arenaria, Mytilus dullis Southern Baltic Sea 1980-1991 0.68-0.85 total U 80 shell 14 3 [67,68] Corbicula fuminea Mya arenaria, Mytilus dullis Southern Baltic Sea 1980-1991 0.68-0.85 total U 80 whole body, ww 15 2 [28] Corbicula	Whitefish	Coregonus clupeaformis, Prosopium cylindraceum	Uranium	ICP-MS	Elliot Lake, ON, Canada				1	total U	8320	bone, ww	13	4 [73]	
Whitefish Coregonus clupeatomis, Prosopium cylindraceum Uranium ICP-MS Elliot Lake, ON, Canada 1 total U 24 muscle, ww 13 4 [73] Mollusc	Whitefish	Coregonus clupeaformis, Prosopium cylindraceum	Uranium	ICP-MS	Whiskey Lake, ON, Canada				35	total U	2	muscle, ww	13	4 [73]	
MolluscBivalvesAstarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytlus edulis238Uelectroplating/alpha spectr.Southern Baltic Sea1980-19910.68-0.85total U55whole body143[67,68]BivalvesAstarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytlus edulis238Uelectroplating/alpha spectr.Southern Baltic Sea1980-19910.68-0.85total U82soft tissue143[67,68]BivalvesAstarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytlus edulis238Uelectroplating/alpha spectr.Southern Baltic Sea1980-19910.68-0.85total U30shell143[67,68]BivalvesAstarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytlus edulis238Uelectroplating/alpha spectr.Southern Baltic Sea1980-19910.68-0.85total U30shell143[67,68]Corbicula fluminea Freshwater muselYo.55 gUraniumICP-OESRiver Ritord, Vienne, FR42 days64.2dissolved U810whole body, ww152[28]Corbicula fluminea Freshwater muselYo.55 gUraniumICP-OESRiver Ritord, Vienne, FR42 days6.412.4dissolved U200whole body, ww52[29]Picidium sp.Length 40-65 mmUraniumICPMSHawkesbury-Nepean River, south-eastern Australia7.136.50.074mean total <td>Whitefish</td> <td>Coregonus clupeaformis, Prosopium cylindraceum</td> <td>Uranium</td> <td>ICP-MS</td> <td>Elliot Lake, ON, Canada</td> <td></td> <td></td> <td></td> <td>1</td> <td>total U</td> <td>24</td> <td>muscle, ww</td> <td>13</td> <td>4 [73]</td> <td></td>	Whitefish	Coregonus clupeaformis, Prosopium cylindraceum	Uranium	ICP-MS	Elliot Lake, ON, Canada				1	total U	24	muscle, ww	13	4 [73]	
Bivalves Astarte borealis, Cardium, Macoma balthica, Mya arenaria, Mytlus edulis 2380 electroplating/alpha southern Baltic Sea 1980-1991 0.68-0.85 total U 55 whole body 14 3 [67,68] Bivalves Astarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytlus edulis 3 Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 14 3 [67,68] Bivalves Astarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytlus edulis Southern Baltic Sea 1980-1991 0.68-0.85 total U 80 soft tissue 14 3 [67,68] Corbicula fluminea No .55 g Uranium ICP-0ES River Ritord, Vienne, FR 42 days 6 4.2 dissolved U 80 whole body, ww 15 2 [28] Corbicula fluminea fw 0.65 g Uranium ICP-0ES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 30 whole body, ww 15 2 [28] Corbicula fluminea fw 0.65 g Uranium ICP-0ES River Ritord, Vienne, FR 42 days 6.4 12.4 diss	Mollusc														
glacum, Macona balthica, glacum, Macona balthica, Mya arenaria, Mytilus eduis spectr. Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 14 3 [67,68] Bivalves Astarte borealis, Cardium glacum, Macona balthica, Mya arenaria, Mytilus eduis 238U electroplating/alpha spectr. Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 14 3 [67,68] Bivalves Astarte borealis, Cardium glacum, Macona balthica, ma arenaria, Mytilus eduis Southern Baltic Sea 1980-1991 0.68-0.85 total U 80 shell 14 3 [67,68] Corbicula fluminea fw 0.55 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6 4.2 dissolved U 810 whole body, wu 15 2 [28] Corbicula fluminea fw 0.65 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 80 whole body, wu 15 2 [28] Friedbade pressa Length 40-69 mm Uranium ICPMS Hawkesbury-Nepean River,	Bivalves	Astarte borealis, Cardium	238U	electroplating/alpha	Southern Baltic Sea	1980-1991			0.68-0.85	total U	55	whole body	14	3 [67,68	3]
Mya arenara, Mytuus eduis 238U electroplating/alpha Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 14 3 [67,68] Bivalves Astarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytilus eduils 238U electroplating/alpha Southern Baltic Sea 1980-1991 0.68-0.85 total U 30 shell 14 3 [67,68] Corbicula fluminea fw 0.56 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 200 whole body, ww 15 2 [28] Corbicula fluminea fw 0.65 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 200 whole body, ww 15 2 [28] Corbicula fluminea fw 0.65 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 20 whole body, ww 15 2 [28] Corbicula fluminea fw 0.65 g Uranium ICPM		glaucum, Macoma balthica,		spectr.											
Braves Astarte borealis, Cardium Mya arenaria, Mytilus edulis 2380 electroplating/alpha spectr. Southern Baltic Sea 1980-1991 0.68-0.85 total U 82 soft tissue 14 3 [67,68] Bivalves Astarte borealis, Cardium glaucum, Macoma balthica, Mya arenaria, Mytilus edulis spectr.		Mya arenaria, Mytilus edulis				1000 1001						6			
Bital control Spectr. Bital control Astarte borealis, Cardium glaucum, Macoma balthica, wya arenaria, Mytilus edulis Saste borealis, Cardium glaucum, Macoma balthica, wya arenaria, Mytilus edulis Southern Baltic Sea 1980-1991 0.68-0.85 total U 30 shell 14 3 [67,68] Corbicula fluminea Mv 0.56 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6 4.2 dissolved U 810 whole body, ww 15 2 [28] Corbicula fluminea fw 0.56 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 800 whole body, ww 15 2 [28] Freshwater mussel 234U Alligator rivers region 4.5-6.5 100 whole body, ww 25 4 [67] Pisidium sp. fluorescence Okanagan Highlands, Central British Columbia, Canada 340 dissolved U 306 whole body, ww 25 4 [67] Velesunio angasi Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1	Bivalves	Astarte borealis,Cardium	2380	electroplating/alpha	Southern Baltic Sea	1980-1991			0.68-0.85	total U	82	soft tissue	14	3 [67,68	3]
Implementance Implemen		giaucum, Macoma Daitnica,		spectr.											
Bridarius Astarte burealis, cardulating glaucum, Macoma baltiting Mya arenaria, Mytilus edulis Construction (Point (Point) Southern baltic Sea (Point) 1960-1991 O.68-0.55 Old O So stell 14 S [67,66] Corbicula fluminea Corbicula fluminea (Point) fw 0.55 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6. 4.2 dissolved U 810 whole body, ww 15 2 [28] Corbicula fluminea (Point) fw 0.65 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 200 whole body, ww 15 2 [28] Corbicula fluminea (Pridella depressa 2380, 2340 Length 40-69 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 339 whole tissue, dw, whole body, ww 2 [29] Velesunio angasi Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 309 whole body, dw 16,20 2 [29] Velesunio angasi Uranium ICPMS South Alligator River, North.	Rivelyee	Mya arenaria, Mytilus edulis	22011	alastroplating /alaba	Couthorn Poltic Coo	1000 1001			0 6 0 0 0 0	totol	20	shall	14	2 [67.6]	01
Mya arenaria, Mytilus edulis Mya arenaria, Mytilus edulis Mya arenaria, Mytilus edulis Walk arenaria Mytilus edulis Myti	Bivalves	glaucum, Macoma balthica,	2380	spectr.	Southern Baltic Sea	1980-1991			0.68-0.85	total U	30	snell	14	3 [07,00	3]
Corbicula fluminea fw 0.56 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6 4.2 dissolved U 810 whole body, ww 15 2 [28] Corbicula fluminea fw 0.65 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 200 whole body, ww 15 2 [28] Corbicula fluminea 238U, 234U Alligator rivers region 4.5-6.5 100 4 [72] Hyridella depressa Length 40-69 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 339 whole tissue, dw, recalc. to ww 2 [29] Velesunio ambiguus Length 40-65 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 204 whole tissue, dw, recalc. to ww 2 [29] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 392		Mya arenaria, Mytilus edulis													_
Corbicula fluminea tw 0.65 g Uranium ICP-OES River Ritord, Vienne, FR 42 days 6.4 12.4 dissolved U 200 whole body, ww 15 2 [28] Freshwater mussel 238U, 234U Alligator rivers region 4.5-6.5 100 100 4 [72] Hyridella depressa Length 40-69 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 339 whole body, ww 25 4 [64] Pisidium sp. fluorescence Okanagan Highlands, Central British Columbia, Canada 340 dissolved U 306 whole body, ww 25 4 [64] Velesunio ambiguus Length 40-65 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 204 whole body, dw 16,20 2 [29] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 340 whole body, dw <td< td=""><td>Corbicula fluminea</td><td>fw 0.56 g</td><td>Uranium</td><td>ICP-OES</td><td>River Ritord, Vienne, FR</td><td>42 days</td><td>6</td><td></td><td>4.2</td><td>dissolved U</td><td>810</td><td>whole body, ww</td><td>15</td><td>2 [28]</td><td></td></td<>	Corbicula fluminea	fw 0.56 g	Uranium	ICP-OES	River Ritord, Vienne, FR	42 days	6		4.2	dissolved U	810	whole body, ww	15	2 [28]	
Preshwater mussel 2380, 234U Alligator rivers region 4.5-6.5 100 4 [72] Hyridella depressa Pisidium sp. Length 40-69 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 339 whole tissue, dw, recalc. to ww 2 [29] Pisidium sp. fluorescence Okanagan Highlands, Central British Columbia, Canada 340 dissolved U 306 whole tosue, dw, recalc. to ww 2 [29] Velesunio ambiguus Length 40-65 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 204 whole body, ww 25 4 [64] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 5590 whole body, dw 16,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 3942 whole body, dw 16,20 2 [32] Velesunio angasi Uranium ICPMS South Alliga	Corbicula fluminea	fw 0.65 g	Uranium	ICP-OES	River Ritord, Vienne, FR	42 days	6.4		12.4	dissolved U	200	whole body, ww	15	2 [28]	_
Hyridella depressa Length 40-69 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 339 whole tissue, dw, recalc. to ww 2 [29] Pisidium sp. fluorescence Okanagan Highlands, Central British Columbia, Canada 340 dissolved U 306 whole body, ww 25 4 [64] Velesunio ambiguus Length 40-65 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 204 whole tissue, dw, recalc. to ww 2 [29] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 5590 whole body, dw 16,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.109 dissolved U 3942 whole body, dw 16,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.104 dissolved U 3942 whole body, dw 16,20 2 [32	Freshwater mussel		2380,		Alligator rivers region		4.5-6.5				100			4 [/2]	
Australia recalc. to ww Pisidium sp. fluorescence Okanagan Highlands, Central British Columbia, Canada 340 dissolved U 306 whole body, ww 25 4 [64] Velesunio angasi Length 40-65 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 204 whole body, dw 16,2 [29] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 5590 whole body, dw 16,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.079 dissolved U 3924 whole body, dw 18,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.079 dissolved U 3942 whole body, dw 18,20 2 [32] Velesunio angasi Age 1.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2351 whole body, dw	Hyridella depressa	Length 40-69 mm	Uranium	ICPMS	Hawkesbury-Nepean River, south-eastern		7.1	36.5	0.074	mean total	339	whole tissue, dw,		2 [29]	—
Pisidium sp. fluorescence Okanagan Highlands, Central British Columbia, Canada 340 dissolved U 306 whole body, ww 25 4 [64] Velesunio ambiguus Length 40-65 mm Uranium ICPMS Hawkesbury-Nepean River, south-eastern Australia 7.1 36.5 0.074 mean total 204 whole body, dw 16,20 2 [29] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 5590 whole body, dw 16,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.079 dissolved U 14220 whole body, dw 16,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.079 dissolved U 3942 whole body, dw 16,20 2 [32] Velesunio angasi Age 1.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 3942 whole body, dw 16,20 2 [32]					Australia							recalc. to ww			
Velesunio ambiguusLength 40-65 mmUraniumICPMSHawkesbury-Nepean River, south-eastern Australia7.136.50.074mean total204whole tissue, dw, recalc. to ww2[29]Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U5590whole body, dw16,202[32]Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.079dissolved U3924whole body, dw18,202[32]Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.104dissolved U3942whole body, dw18,202[32]Velesunio angasiAge 1.5 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2335whole body, dw162[32]Velesunio angasiAge 2.5 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2315whole body, dw162[32]Velesunio angasiAge 3 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2314whole body, dw162[32]Velesunio angasiAge 3 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2314whole body, dw162[32]	Pisidium sp.			fluorescence	Okanagan Highlands, Central British Columbia, Canada	,			340	dissolved U	306	whole body, ww	25	4 [64]	
Velesunio angasiInclusion in termsVelesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U5590whole body, dw16,202[32]Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.109dissolved U3924whole body, dw17,20,213[32]Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.104dissolved U3924whole body, dw18,202[32]Velesunio angasiAge 1.5 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2335whole body, dw162[32]Velesunio angasiAge 2.5 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2348whole body, dw162[32]Velesunio angasiAge 3 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2348whole body, dw162[32]	Velesunio ambiguus	Length 40-65 mm	Uranium	ICPMS	Hawkesbury-Nepean River, south-eastern		7.1	36.5	0.074	mean total	204	whole tissue, dw,		2 [29]	
Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.109dissolved U14220Whole body, dw17,20,21 3[32]Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.079dissolved U3924whole body, dw18,202[32]Velesunio angasiUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.104dissolved U3942whole body, dw19,202[32]Velesunio angasiAge 1.5 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U2335whole body, dw162[32]Velesunio angasiAge 2.5 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U6211whole body, dw162[32]Velesunio angasiAge 3 yUraniumICPMSSouth Alligator River, North. Terr., AUSNov. 20000.161dissolved U6211whole body, dw162[32]	Velesunio angasi		Uranium	ICPMS	South Alligator River, North. Terr., AUS	Nov. 2000			0.161	dissolved U	5590	whole body. dw	16,20	2 [32]	—
Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.079 dissolved U 3924 whole body, dw 18,20 2 [32] Velesunio angasi Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.104 dissolved U 3942 whole body, dw 19,20 2 [32] Velesunio angasi Age 1.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2335 whole body, dw 16 2 [32] Velesunio angasi Age 2.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2335 whole body, dw 16 2 [32] Velesunio angasi Age 3 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2348 whole body, dw 16 2 [32]	Velesunio angasi		Uranium	ICPMS	South Alligator River, North, Terr., AUS	Nov. 2000			0.109	dissolved U	14220	whole body, dw	17.20.21	3 [32]	—
Velesunio angasi Age 1.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.104 dissolved U 3942 whole body, dw 19,20 2 [32] Velesunio angasi Age 1.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 3942 whole body, dw 19,20 2 [32] Velesunio angasi Age 2.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2315 whole body, dw 16 2 [32] Velesunio angasi Age 3 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2348 whole body, dw 16 2 [32] Velesunio angasi Age 3 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2348 whole body, dw 16 2 [32]	Velesunio angasi		Uranium	ICPMS	South Alligator River, North, Terr., AUS	Nov. 2000			0.079	dissolved II	3924	whole body, dw	18.20	2 [32]	-
Velesunio angasi Age 1.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 235 whole body, dw 16 2 [32] Velesunio angasi Age 2.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 231 whole body, dw 16 2 [32] Velesunio angasi Age 3 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2348 whole body, dw 16 2 [32]	Velesunio angasi		Uranium	ICPMS	South Alligator River, North, Terr., AUS	Nov. 2000			0.104	dissolved U	3942	whole body, dw	19.20	2 [32]	-
Velesunio angasi Age 2.5 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 201 Whole body, dw 16 2 [32] Velesunio angasi Age 3 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2348 whole body, dw 16 2 [32]	Velesunio angasi	Age 1.5 v	Uranium	ICPMS	South Alligator River, North, Terr., AUS	Nov. 2000			0.161	dissolved U	2335	whole body, dw	16	2 [32]	—
Velesunio angasi Age 3 y Uranium ICPMS South Alligator River, North. Terr., AUS Nov. 2000 0.161 dissolved U 2348 whole body, dw 16 2 [32]	Velesunio angasi	Age 2.5 y	Uranium	ICPMS	South Alligator River, North. Terr., AUS	Nov. 2000			0.161	dissolved U	6211	whole body, dw	16	2 [32]	_
	Velesunio angasi	Age 3 y	Uranium	ICPMS	South Alligator River, North. Terr., AUS	Nov. 2000			0.161	dissolved U	2348	whole body, dw	16	2 [32]	—

Species	Species	Test	Analysis	Sampling area	Sampling	nН	Hardness T Exposu	re Exposure	BAF	BAF type	Notes	Ri	Ref.
openeo	properties	substance	, analysis		period	p.,	[mg [°C] conc.	type	[l/kg _{w.w.}]	bia cipo			
							CaCO3/I] [µg/L]						
Velesunio angasi	Age 3.5 y	Uranium	ICPMS	South Alligator River, North. Terr., AUS	Nov. 2000		0.161	dissolved L	3311	whole body, dw	16	2	[32]
Velesunio angasi	Age 4.5 y	Uranium	ICPMS	South Alligator River, North. Terr., AUS	Nov. 2000		0.161	dissolved L	3466	whole body, dw	16		[32]
Velesunio angasi	Age 3.5 y	Uranium	ICPMS	South Alligator River, North. Terr., AUS	Nov. 2000		0.109	dissolved L	4009	whole body, dw	17,21		[32]
Velesunio angasi	Age 4.5 y	Uranium		South Alligator River, North. Terr., AUS	Nov. 2000		0.109	dissolved L	4385	whole body, dw	17,21		[32]
Velesunio angasi	Age 2.5 y	Uranium		South Alligator River, North. Terr., AUS	Nov. 2000		0.079	dissolved L	1 5/72	whole body, dw	18		[32]
Velesunio angasi	Age 2.5 y	Uranium		South Alligator River, North. Terr., AUS	Nov. 2000		0.079	dissolved L	1532	whole body, dw	18		[32]
Velesunio angasi	Age 3.5 y	Uranium		South Alligator River, North. Terr., AUS	Nov. 2000		0.079	dissolved L	1/34	whole body, dw	18	2	[32]
	Age 4.5 y	Uranium		South Alligator River, North. Terr., AUS	Nov. 2000		0.079	dissolved C	1620	whole body, dw	10	2	[32]
Velesunio angasi	Age 5.5 y	Uranium		South Alligator River, North. Terr., AUS	Nov. 2000		0.079	dissolved L	1620	whole body, dw	18	<u></u>	[32]
Velesunio angasi	Age 7.5 y	Uranium		South Alligator River, North, Terr., AUS	Nov. 2000		0.079	dissolved L	1 3329	whole body, dw	10	2	[32]
Velesunio angasi	Age 3.5 y $Age 1.4 = 0.20 \text{ g p} = 12$	Uranium		South Angelor River, North. Terr., AUS	Mov. 2000		0.104	dissolved L	14000	whole body, dw	19	2	[32]
Velesunio angasi	Age 1 y, 0.29 g, 11–12	Uranium	ICP-MS	Bowerbird Billabong	May 107		0.01	dissolved L	14000	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 2 y, 0.47 g, $n=14$	Uranium		Bowerbird Billabong	May '07		0.01	dissolved L	14000	whole body, dw	22	2	[30,31]
Velecunio angasi	Age 4×0.79 g n=18	Uranium		Bowerbird Billabong	May '07		0.01	dissolved L	10000	whole body, dw	22	- 2	[30,31]
Velesunio angasi	Age $4 y$, $0.79 g$, $n=10$	Uranium	ICP-MS	Bowerbird Billabong	May '07		0.01	dissolved L	110000	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 6 y = 1.00 g, n=11	Uranium	ICP-MS	Bowerbird Billabong	May '07		0.01	dissolved L	7000	whole body, dw	22	- 2	[30,31]
Velecunio angasi	Age 7 y 1.57 g $n=2$	Uranium	ICP-MS	Bowerbird Billabong	May '07		0.01	dissolved L	12000	whole body, dw	22	2	[30,31]
Velesunio angasi	$Age 8 \times 1.93 \text{ g}, n=2$	Uranium	ICP-MS	Bowerbird Billabong	May '07		0.01	dissolved L	7000	whole body, dw	22	2	[30 31]
Velesunio angasi	Age 10 y 1 76 g $n=1$	Uranium	ICP-MS	Bowerbird Billabong	May '07		0.01	dissolved L	14000	whole body, dw	22	2	[30 31]
Velesunio angasi	Age 1 v $0.19 g$ n=53	Uranium	ICP-MS	Magela Creek unstream	May '07		0.018	dissolved L	13000	whole body, dw	22	2	[30 31]
Velesunio angasi	Age 2 y 0.43 g $n=14$	Uranium	ICP-MS	Magela Creek upstream	May '07		0.018	dissolved L	12000	whole body, dw	23	2	[30 31]
Velesunio angasi	Age 3 v. 0.61 g , $n=9$	Uranium	ICP-MS	Magela Creek upstream	May '07		0.018	dissolved L	9000	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 4 v. 0.71 g , $n=11$	Uranium	ICP-MS	Magela Creek upstream	May '07		0.018	dissolved L	9000	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 5 v. 0.91 g, $n=2$	Uranium	ICP-MS	Magela Creek upstream	May '07		0.018	dissolved L	8000	whole body, dw	23	2	[30.31]
Velesunio angasi	Age 1 v. $0.57g$, n=23	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved L	5700	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 2 v. 0.96 g , $n=12$	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved L	4400	whole body, dw	22	2	[30.31]
Velesunio angasi	Age 3 v. 1.22 g. $n=11$	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved L	4500	whole body, dw	22	2	[30.31]
Velesunio angasi	Age 4 v, 1.37 g, $n=10$	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved U	4900	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 5 v, 1.44 g, n=11	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved L	3900	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 6 y, 1.37 g, n=4	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved L	5300	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 8 y, 1.88 g, n=2	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved L	5000	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 9 y, 1.68 g, n=2	Uranium	ICP-MS	Georgetown confluence	May '07		0.133	dissolved L	5500	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 1 y, 0.16 g, n=38	Uranium	ICP-MS	Magela Creek downstream	May '07		0.048	dissolved L	9600	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 2 y, 0.52 g, n=9	Uranium	ICP-MS	Magela Creek downstream	May '07		0.048	dissolved L	7100	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 3 y, 0.55 g, n=9	Uranium	ICP-MS	Magela Creek downstream	May '07		0.048	dissolved L	6900	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 4 y, 0.65 g, n=17	Uranium	ICP-MS	Magela Creek downstream	May '07		0.048	dissolved L	5400	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 5 y, 0.72 g, n=5	Uranium	ICP-MS	Magela Creek downstream	May '07		0.048	dissolved L	6000	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 6 y, 0.79 g, n=2	Uranium	ICP-MS	Magela Creek downstream	May '07		0.048	dissolved L	4800	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 7 y, 0.80 g, n=5	Uranium	ICP-MS	Magela Creek downstream	May '07		0.048	dissolved L	5400	whole body, dw	23	2	[30,31]
Velesunio angasi	Age 1 y, 0.27 g, n=10	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	8500	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 2 y, 0.31 g, n=16	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	8200	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 3 y, 0.43 g, n=19	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	8800	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 4 y, 0.41 g, n=7	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	6700	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 5 y, 0.49 g, n=6	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	9700	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 6 y, 0.45 g, n=9	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	11000	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 7 y, 0.51 g, n=10	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	11000	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 8 y, 0.57 g, n=5	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	10000	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 9 y, 0.52 g, n=1	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	7900	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 10 y, 0.60 g, n=2	Uranium	ICP-MS	Mudginberri Billabong	May '07		0.033	dissolved L	19000	whole body, dw	22	2	[30,31]
Velesunio angasi	Age 1 y, 0.18g , n=10	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08		0.02	dissolved L	12000	whole body, dw	22	2	[30]
Velesunio angasi	Age 2 y, 0.56 g, n=14	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08		0.02	dissolved L	9500	whole body, dw	22	2	[30]
Velesunio angasi	Age 3 y, 0.74 g, n=13	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08		0.02	dissolved L	9000	whole body, dw	22	2	[30]
Velesunio angasi	Age 4 y, 0.94 g, n=6	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08		0.02	dissolved L	7500	whole body, dw	22		[30]
Velesunio angasi	Age 5 y, 0.89 g, n=6	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08		0.02	dissolved L	9000	whole body, dw	22	2	[30]
Velesunio angasi	Age 6 y, 1.17 g, n=8	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08		0.02	dissolved L	11000	whole body, dw	22	2	[30]

Species	Species	Test	Analysis	Sampling area	Sampling	pН	Hardness T	Exposure	Exposure	BAF	BAF type	Notes	Ri Ref.
	properties	substance			period	•	[mg [°C]	conc.	type	[l/kg _{w.w.}]			
							CaCO3/I]	[µg/L]					
Velesunio angasi	Age 7 y, 1.15 g, n=8	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08			0.02	dissolved U	8500	whole body, dw	22	2 [30]
Velesunio angasi	Age 8 y, 1.15 g, n=12	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08			0.02	dissolved U	13000	whole body, dw	22	2 [30]
Velesunio angasi	Age 9 y, 1.05 g, n=6	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08			0.02	dissolved U	13000	whole body, dw	22	2 [30]
Velesunio angasi	Age 10 y, 1.17 g, n=5	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08			0.02	dissolved U	14000	whole body, dw	22	2 [30]
Velesunio angasi	Age 11 y, 1.77 g, n=3	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08			0.02	dissolved U	12000	whole body, dw	22	2 [30]
Velesunio angasi	Age 14 y, 1.37 g, n=1	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '08			0.02	dissolved U	13000	whole body, dw	22	2 [30]
Velesunio angasi	Age 1 y, 0.25 g, n=4	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. '08			0.02	dissolved U	12000	whole body, dw	22	2 [30]
Velesunio angasi	Age 2 y, 0.50 g, n=8	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. '08			0.02	dissolved U	11000	whole body, dw	22	2 [30]
Velesunio angasi	Age 3 y, 0.83 g, n=13	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. '08			0.02	dissolved U	9000	whole body, dw	22	2 [30]
Velesunio angasi	Age 4 y, 0.74 g, n=18	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. '08			0.02	dissolved U	12000	whole body, dw	22	2 [30]
Velesunio angasi	Age 5 y, 0.89 g, n=16	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. '08			0.02	dissolved U	14000	whole body, dw	22	2 [30]
Velesunio angasi	Age 6 y, 0.90 g, n=7	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. 108			0.02	dissolved U	12000	whole body, dw	22	2 [30]
Velesunio angasi	Age 7 y, 1.02 g, n=12	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. 108			0.02	dissolved U	12000	whole body, dw	22	2 [30]
Velesunio angasi		Uranium		Mudginberri Billabong mid	Oct. 108			0.02	dissolved U	20000	whole body, dw	22	2 [30]
Velesunio angasi	Age 9 y, 0.85 y, $n=3$	Uranium	ICP-MS	Mudginberri Billabong mid	Oct. '08			0.02	dissolved U	20000	whole body, dw	22	2 [30]
Velesunio angasi	Age 11 y, 1.04 g, $n=2$	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	8500	whole body, dw	22	2 [30]
Velecunio angasi	Age 3 y 0 59 g n=15	Uranium		Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	9000	whole body, dw	22	2 [30]
Velesunio angasi	Age $5 y$, $0.35 g$, $11-3$	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	10000	whole body, dw	22	2 [30]
Velesunio angasi	Age 5 v 0.78 g $n=10$	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct '08			0.02	dissolved U	11000	whole body, dw	22	2 [30]
Velesunio angasi	Age 6 y, 0.91 g , $n=16$	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	9500	whole body, dw	22	2 [30]
Velesunio angasi	Age 7 v. 1.0 g. $n=12$	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	9500	whole body, dw	22	2 [30]
Velesunio angasi	Age 8 v, 1.04 g, $n=5$	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	14000	whole body, dw	22	2 [30]
Velesunio angasi	Age 9 y, 0.98 g, $n=3$	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	14000	whole body, dw	22	2 [30]
Velesunio angasi	Age 11 y, 0.96 g, n=1	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	16000	whole body, dw	22	2 [30]
Velesunio angasi	Age 13 y, 1.37 g, n=1	Uranium	ICP-MS	Mudginberri Billabong outlet	Oct. '08			0.02	dissolved U	12000	whole body, dw	22	2 [30]
Velesunio angasi	Age 1 y, 0.18 g, n=20	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	9000	whole body, dw	22	2 [30]
Velesunio angasi	Age 2 y, 0.68 g, n=19	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	7000	whole body, dw	22	2 [30]
Velesunio angasi	Age 3 y, 0.85 g, n=17	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	7500	whole body, dw	22	2 [30]
Velesunio angasi	Age 4 y, 0.99 g, n=10	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	8500	whole body, dw	22	2 [30]
Velesunio angasi	Age 5 y, 0.99 g, n=5	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	10000	whole body, dw	22	2 [30]
Velesunio angasi	Age 6 y, 1.14 g, n=6	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	9500	whole body, dw	22	2 [30]
Velesunio angasi	Age 7 y, 1.14 g, n=5	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	10000	whole body, dw	22	2 [30]
Velesunio angasi	Age 8 y, 1.03 g, n=3	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	11000	whole body, dw	22	2 [30]
Velesunio angasi	Age 9 y, 1.22 g, n=2	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	13000	whole body, dw	22	2 [30]
Velesunio angasi	Age 10 y, 1.07 g, n=2	Uranium	ICP-MS	Mudginberri Billabong inlet	Oct. '05			0.02	dissolved U	12000	whole body, dw	22	2 [30]
Velesunio angasi	Age 1 y, 0.14 g, n=13	Uranium	ICP-MS	Sandy billabong	Oct. '05			0.014	dissolved U	7100	whole body, dw	24	2 [30]
Velesunio angasi	Age 2 y, 0.36 g, n=7	Uranium	ICP-MS	Sandy billabong	Oct. 105			0.014	dissolved U	10000	whole body, dw	24	2 [30]
Velesunio angasi	Age 3 y, 0.84 g, n=19	Uranium	ICP-MS	Sandy billabong	Oct. 105			0.014	dissolved U	9300	whole body, dw	24	2 [30]
Velesunio angasi	Age 4 y, 0.59 g, n=11	Uranium	ICP-MS	Sandy billabong	Oct. 105			0.014	dissolved U	7000	whole body, dw	24	2 [30]
Velesunio angasi	Age 5 y, 0.66 g, n=19	Uranium	ICP-MS	Sandy billabong	Oct. 05			0.014	dissolved U	7900	whole body, dw	24	2 [30]
Velesunio angasi	Age 6 y, 0.64 g, n=8	Uranium	ICP-MS	Sandy billabong	Oct. 105			0.014	dissolved U	7000	whole body, dw	24	2 [30]
Velesunio angasi	Age 7 y, 0.87 g, 11-8	Uranium	ICP-MS	Sandy billabong	Oct. 05			0.014	dissolved U	11000	whole body, dw	24	2 [30]
Velesunio angasi	Age 10 y 0.57 g n=1	Uranium	ICP-MS	Sandy billabong	Oct. '05			0.014	dissolved U	10000	whole body, dw	24	2 [30]
Velesunio angasi	Age 10 y, 0.57 g, $n=1$	Uranium	ICP-MS	Sandy billabong	Oct. '05			0.014	dissolved U	9300	whole body, dw	24	2 [30]
Velesunio angasi	Age 1 y, 0.38 g $n=11$	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	5700	whole body, dw	24	2 [30]
Velesunio angasi	Age 2 v_{1} 0.50 g_{1} n=8	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	5800	whole body, dw	24	2 [30]
Velesunio angasi	Age 3 v. 0.58 g. $n=20$	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	5000	whole body, dw	24	2 [30]
Velesunio angasi	Age 4 v. 0.63 g. $n=24$	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	6400	whole body, dw	24	2 [30]
Velesunio angasi	Age 5 y, 0.67 a. n=14	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved II	8600	whole body, dw	24	2 [30]
Velesunio angasi	Age 6 y, 0.74 g, n=10	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	6100	whole body, dw	24	2 [30]
Velesunio angasi	Age 7 y, 0.81 g, n=5	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	6400	whole body, dw	24	2 [30]
Velesunio angasi	Age 8 y, 1.11 g, n=3	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	5000	whole body, dw	24	2 [30]
Velesunio angasi	Age 9 y, 0.98 g, n=2	Uranium	ICP-MS	Sandy billabong	Oct. '08			0.014	dissolved U	7100	whole body, dw	24	2 [30]

Notes

- 1 Concentration ratios are based on average water concentrations and appear to be generally lower than those summarised in the paper for individual water samples
- 2 n=1
- 3 n=2
- 4 Exposure concentration determined in samples taken in June 1979,
- 5 BAFs from paper could not be recalculated from data in paper but recalculation are in same order of magnitude
- 6 BAFs calculated from data in paper
- 7 Tissue was mainly flesh, bone and organs
- 8 Filtered over 0.45 µm; near Gdansk, Poland; concentrations muscle<skeleton<viscera
- 9 Secondary sources
- 10 Concentrations only given in Becquerel and for specific isotopes
- 11 Exposure concentration for day of collection only, at other location the day concentration was in the same order of magnitude as the annual mean concentration
- 12 BAF recalculated for annual mean concentration, unclear if wet weight or dry weight, wet weight is presumed
- 13 Total water was used, but differences between total and dissolved are small; low total concentrations were often lower than dissolved concentrations; discrepancy in water concentrations between different tables

- 14 Filtered over 0.45 μm; near Gdansk, Poland; higher values in molluscs, lower values in crustacean
- 15 Clams from reference site transplanted upstream from discharge point in U-mining area; corresponding concentration total 5.1 μg U/L; average of 10 individuals
- 16 BAF calculated from reported measured concentrations in water and mussels at site 2
- 17 BAF calculated from reported measured concentrations in water and mussels at site 3
- 18 BAF calculated from reported measured concentrations in water and mussels at site 5
- 19 BAF calculated from reported measured concentrations in water and mussels at site 6
- 20 Residues in mussel are mean of samples from different size classes
- 21 Reported mean residue (1.55 μg/g dwt) is much higher than values reported for individual mussels from different size classes (0.437 and 0.478 μg/g dwt)
- 22 Period of water sampling unclear
- 23 Water concentration measured during three wet seasons in period 2005-2008
- 24 Water concentration estimated from graph
- 25 In the paper errors are made in the calculation of wet weight endpoints and not enough details are reported to be able to be certain of the real value of the actual endpoints

Table A2.2 Bioconcentration factors for aquatic organisms

Species	Species properties	Test substance	Purity Analysis	Test	Test	nН	Hardness	s T	Exposure	Exposure	BCF	BCE type	Method	Notes	Ri R	lef.
openeo				type	water	P	/Salinity		time	concentratio	20.	50. t)pc	. ietiiou			
				-76-			, ,			n						
			[%]				[mg/l]	[°C]	[d]	[µg/L]	[l/kg _{w.w.}]					
Carassius auratus	5-6 cm, 1.5-3.0 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-MS	S	rw	≥8	hard	20±1	4 + 4 d	100	144	dw, dorsal	kin	1,2	3 [7	74]
												muscle				
Carassius auratus	5-6 cm, 1.5-3.0 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-MS	S	rw	≥8	hard	20±1	4 + 4 d	450	23	dw, dorsal	kin	1	3 [7	74]
Caraccius auratus	E.6.cm 1 E 2 0 g		ICD MS	c	F14/	<u>\</u> 0	bard	20±1	4 + 4 d	2025	F	muscle	kin	1	2 ["	741
Carassius auratus	5-0 cm, 1.5-5.0 g	002(1003)2.0120	ICF-M3	3	I VV	20	naru	2011	4 + 4 u	2023	5	uw, uursai muscle	КШ	1	2 [/4]
Danio rerio	0.22±0.04 g	depl. UO2(NO2)2.6H2O	ICP-AES	FT	am	6.5±0.	1 48.5	24±1 (25)	20 d	26.7	1033.3	ww. whole body	55	3.4	3 [3	36.751
Danio rerio	0.22±0.04 g	depl. UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-AES	FT	am	6.5±0.	1 48.5	24±1 (25)	20 d	118	359.5	ww, whole body	SS	3.5	3 [3	36,751
Danio rerio	0.22±0.04 g	depl. UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-AES	FT	am	6.5±0.	1 48.5	24±1 (25)	20 d	501	92.8	ww, whole body	SS	6	2 [3	36,75]
Danio rerio	0.22±0.04 g	depl. UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-AES	FT	am	6.5±0.	1 48.5	24±1 (25)	20 d	501	80.7	ww, whole body	kin	6,7	2 [3	36,75]
Danio rerio	adult, 👌	depl. UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-MS/ICP-AES	FT	tap	8.1	241.6	26±1	20 d	17±6.5	21.5	ww, whole body	SS	8	3 [4	41]
Danio rerio	adult, Q	depl. UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-MS/ICP-AES	FT	tap	8.1	241.6	26±1	20 d	17±6.5	39.4	ww, whole body	SS	8	3 [4	411
Danio rerio	adult, 3, 120 d, 3.9±0.3 cm,	depl. UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-AES	R	am		48.5	24±1	20 d	102±27	137.5	ww, whole body	SS	6	2 [3	37]
	0.458±0.107 g														-	-
Danio rerio	adult, 👌 120 d, 3.9±0.3 cm,	93.35% depleted and	alpha-LSC	R	am		48.5	24±1	20 d	94±23	130.4	ww, whole body	SS	6	2 [3	37]
	0.458±0.107 g	6.65% ²³³ U UO ₂ (NO ₃) ₂														
Danio rerio	adult, 3, 3.6±0.2 cm, 0.345±0.045 g	depl. $UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES	R	am	6.5±0.	1 48.5	24±1	20 d	102±27	120	ww, whole body	SS	6	2 [3	35]
Danio rerio	adult, 👌, 3.6±0.2 cm, 0.345±0.045 g	93.35% depleted and	alpha-LSC	R	am	6.5±0.	1 48.5	24±1	20 d	94±23	149	ww, whole body	SS	6	2 [3	35]
		6.65% ²³³ U UO ₂ (NO ₃) ₂														
Danio rerio	adult, 3, 3.6±0.2 cm, 0.345±0.045 g	depl. $UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES	R	am	6.5±0.	1 48.5	24±1	20 d	102±27	105	ww, whole body	kin	6,7	2 [35]
Danio rerio	adult, 3, 3.6±0.2 cm, 0.345±0.045 g	93.35% depleted and	alpha-LSC	R	am	6.5±0.	1 48.5	24±1	20 d	94±23	221	ww, whole body	kin	6,7	2 [3	35]
<u> </u>		6.65% ²³³ U UO ₂ (NO ₃) ₂) D		6 5 1 0	2 40 4	2514	45 1 (1 0	10.011.5	5252				2 1	201
Danio rerio	embryo/larval	depl. UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-AES (water); ICP-MS (fish	<u>1) R</u>	am	6.5±0.	2 48.4	25±1	15 d (dpf)	16.8±1.5	5352	dw, whole body	SS		2 [3	38
Danio rerio	embryo/larval	2330 uranyi nitrate	alpha LSC	R	ann	6.5±0.	2 40.4	25±1	15 d (dpf)	10.0±0.2	2141	dw, whole body	55		2 [3	201
Danio rerio	$\frac{1}{2}$		ICD AEC (water), ICD MC (field		dili	6.5±0.	2 40.4	23±1	15 d (upi)	0/±1.5	40/9	dw, whole body	55	0	2 [3	261
Danio reno	adult, 0, 3.33±0.14 cm, 0.70±0.08 g	$00_2(N0_3)_2 \cdot 01_20$	ICP-AES (water); ICP-MS (IISI	I) CF	rw	0.4	27.5	24.5±0.5	28 U	32±10	12	uw, skeletal	55	9	2 [/	70]
Danio rerio	adult 👌 3 33+0 14 cm 0 70+0 08 g	$UO_{2}(NO_{2})_{2} \cdot 6H_{2}O$	ICP-AFS (water): ICP-MS (fish) CF	rw	64	27.5	24 5+0 3	28 d	32+10	12	dw brain	55	9	2 []	761
Danio rerio	adult, 3, 3,33±0.14 cm, 0.70±0.08 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AFS (water); ICP-MS (fish	CF	rw	6.4	27.5	24.5±0.3	28 d	105±16	15	dw. skeletal	55	9	2 []	761
Banio Fario		002(1103)2 01120		., c.			2710	2.110-010	20 0	100-10	10	muscle	00	5	- 1	, 0]
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	UO ₂ (NO ₃) ₂ .6H ₂ O	ICP-AES (water): ICP-MS (fish	1) CF	rw	6.4	27.5	24.5±0.3	28 d	105±16	8	dw, brain	SS	9	2 []	761
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-AES (water); ICP-MS (fish	i) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	23±6	3	dw, brain	SS	9,10	2 []	771
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES (water); ICP-MS (fish	n) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	130±34	4	dw, brain	SS	9,10	2 []	77]
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	UO ₂ (NO ₃) ₂ ·6H ₂ O	ICP-AES (water); ICP-MS (fish	n) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	23±6	11	dw, skeletal	SS	9,10	2 []	77]
												muscle			-	-
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES (water); ICP-MS (fish	n) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	130±34	5	dw, skeletal	SS	9,10	2 [7	77]
												muscle				
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES (water); ICP-MS (fish	ı) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	23±6	22	dw, liver	SS	9,10	2 [7	77]
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES (water); ICP-MS (fish	ı) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	130±34	20	dw, liver	SS	9,10	2 []	77]
Danio rerio	adult, 3, 3.33±0.14 cm, 0.70±0.08 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES (water); ICP-MS (fish	ı) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	23±6	27	dw, gills	SS	9,10	2 []	77]
Danio rerio	adult, ♂, 3.33±0.14 cm, 0.70±0.08 g	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES (water); ICP-MS (fish	1) CF	am	6.4±0.	2 27.5	24.5±0.5	28 d	130±34	38	dw, gills	SS	9,10	2 [7	77]
Danio rerio		uranyl acetate	ICP-MS	S	dtw	7.9±0.	2 178		28 + 31 d	151	12	ww, whole body	kin	11	3 [7	78]
Danio rerio		uranyl acetate	ICP-MS	S	dtw	7.9±0.	2 178		28 d	151	0.009	ww, whole body	SS	11	3 []	78]
Danio rerio	adult	depleted uranium	ICP-AES	S	am	6.5		26	37 d	20	3700	dw, whole fish	SS	12	2 [3	34]
Danio rerio	adult	depleted uranium	ICP-AES	S	am	6.5		26	37 d	100	1770	dw, whole fish	SS	12	2 [3	34]
Mogurnda mogurnda	larvae, newly hatched (<10 h)	UO ₂ SO ₄ ·3H ₂ O	ICP-MS	FT	nw	6.7	4.2	27±1	28 d	90	98	dw, whole body	SS	13	2 [3	39]
Mogurnda mogurnda	larvae, newly hatched (<10 h)	$UO_2SO_4 \cdot 3H_2O$	ICP-MS	FT	nw	6.7	4.2	27±1	28 d	180	76	dw, whole body	SS	13	2 [3	39
Mogurnda mogurnda	larvae, newly hatched (<10 h)	$UU_2SO_4 \cdot 3H_2O$	ICP-MS	FT	nw	6.7	4.2	27±1	28 d	380	66	dw, whole body	SS	13	2 [3	39]
Mogurnda mogurnda	larvae, newly hatched (<10 h)	UU2SO4·3H2O	ICP-MS	FT	nw	6.7	4.2	27±1	28 d	//0	69	dw, whole body	SS	13	2 [3	39
Mogurnda mogurnda	larvae, newly hatched (<10 h)	UU2SO4·3H2O	ICP-MS	FT	nw	6.7	4.2	27±1	28 d	1400	129	dw, whole body	SS	13	2 [3	39
Mogurnda mogurnda	larvae, newly hatched (<10 h)	UU2SU4·3H2U	ICP-MS		nw	6.2	1./	2/±1	28 d	410	59	aw, whole body	SS	13	2 [3	39]
Mogurnda mogurnda	larvae, newly hatched (<10 h)				nw	0.1 6	1.7	2/±1	28 C	800	126	dw, whole body	SS	13	2 [3	39]
mogurnaa mogurnda	iarvae, newly natched (<10 h)	υU2SU4·3H2U	104-112	FI	nw	U	1./	2/±1	28 û	1230	120	uw, whole body	55	13	[.	29]
UNITIVOTOUS FISH											0.7-38				4 4	19

With the product of the prod	Species	Species properties	Test substance	Purity Analysis	Test	Test	рН	Hardness	Т	Exposure	Exposure	BCF	BCF type	Method	Notes	Ri Re	ef.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					type	water		/Salinity		time	concentratio						
Oncompute mywes Juenelis 5.84 3.9 10 0 20 15.1 ww.gilts in 1.4 3 800 Oncompute myws Juenelis 5.81 3.0 100 100 100 <				[%]				[mg/l]	[°C]	[d]	 [μg/L]	[l/kg _{w.w.}]]				
Oncertruction mytes jovenile, 5.84.1.3.9, 7.94.0.6 cm UO(ND), jeth_O ICP-AES FT am 6.5 48.2 10 10 5.7 ww, alis kin 14 3 [80] Oncomprish mytes justified 1.2 2.7 mw, alis mile 1.6 3 1.8 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0 3 1.0	Oncorhynchus mykiss	juvenile, 5.8±1.3 g, 7.9±0.6 cm	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES	FT	am	6.5	48.2	10	10 d	20	15.1	ww, gills	kin	14	3 [8	30]
Oncertynchus mykiks juvenile, 5, 84.1.3, g, 7.9.4.0. cm UQ(NO), 6H,0 ICP-AES F m 6.5 4.8.2 10 10.4 500 4.2. ww, glis kin 14 3 [80] Oncomputation mykas juvenile, 4.2.g, 7.0 cm 238U, UO(NO), 6H,0 5 no 7.5.8.0 10.5.13.8.5.6.4 960 2.6. ww, whole fish 16.6 2 18.1 Oncomputation mykas juvenile, 4.2.g, 7.0 cm 238U 5 nw 7.5.8.0 10.5.13.6 56.4 960 2.6. ww, whole fish 16.6 2 18.1 Packversus fish 238U - 9.0.4. 0.5.9.7 - 4 7.9 PaintNerrous fish juvenile, 60 days post batch UO.50,2H,0 F new 4/w 201 13.5 7.7 0.63 4 ww, whole fish as 17<2	Oncorhynchus mykiss	juvenile, 5.8±1.3 g, 7.9±0.6 cm	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES	FT	am	6.5	48.2	10	10 d	100	5.7	ww, gills	kin	14	3 [8	30]
OraceProducts mykes purelle, 4.2, g. 7.0 cm 280, Uo(NO2), 640, O 5 nw 7.5 8.0 10.5 13.6 6 d 960 10.0 dw, whole fish 15 15.6 3 81 OraclPrychus mykes yurelle, 4.2, g. 7.0 cm 2310 5 nw 7.5 8.0 10.5 13.6 6.0 0.78 37.4 dw, whole fish 16 2 81 OraclPrychus mykes yurelle, 4.2, g. 7.0 2310 5 nw 7.5 8.0 10.5 13.6 6.0 0.78 7.6 0.4 7.6 0.6 7.6 0.4 7.6 0.6 7.6 0.6 7.6 0.6 7.6 0.6 7.6 0.7	Oncorhynchus mykiss	juvenile, 5.8±1.3 g, 7.9±0.6 cm	$UO_2(NO_3)_2 \cdot 6H_2O$	ICP-AES	FT	am	6.5	48.2	10	10 d	500	4.2	ww, gills	kin	14	3 [8	30]
Oncontructury myss juvenik, 4.2, y. 0, cm 28U, UO, (NO), EH;Q 5 nw 7.5.8.0 10.5.13.6 35.4 960 2.6 dw, whole fish 1.6 2 1.81 Oncontructury myss juvenik, 4.2, y. 0. cm 2320 5 nw 7.5.8.0 10.5.13.6 3.5 0.078<	Oncorhynchus mykiss	juvenile, 4.2 g, 7.0 cm	238U, UO ₂ (NO ₃) ₂ ·6H ₂ O		S	nw	7.5-8.0		10.5-13.6	6 d	960	19.0	dw, whole fish	SS	15,16	3 [8	31]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oncorhynchus mykiss	juvenile, 4.2 g, 7.0 cm	238U, UO2(NO3)2·6H2O		S	nw	7.5-8.0		10.5-13.6	35 d	960	2.6	dw, whole fish		16	2 [8	31]
Oncomprutors mykers juvenile, 4.2 g, 7.0 cm 2321 S nr 7.5-8.0 10.5-13.6 35 d 0.078 20.9 dw, whole fish 16 2 [81] Planktivorus fish 2380 - - - 0.3-6.6 - 4 [73] Planktivorus fish juvenile, 60 days post batch U0_S0,3H_0 F nw+dw 8 201 13.5 77 d 0.3 4 ww, whole fish ss 17 2 [27] Salvelinus fontanies juvenile, 60 days post batch U0_S0,3H_0 F nw+dw 8 201 13.5 77 d 0.6 3 ww, whole fish ss 17 2 [27] Salvelinus fontanies juvenile, 60 days post batch U0_S0,3H_0 F nw+dw 8 201 13.5 77 d 1.1 2.9 ww, whole fish ss 17 2 27] Salvelinus fontanies juvenile, 60 days post batch U0_S0,3H_0 F nw+dw 8 201 13.5 77 d 4.2 2.7 ww, whole fish ss 17 2 27] 21 21 14.4<	Oncorhynchus mykiss	juvenile, 4.2 g, 7.0 cm	232U		S	nw	7.5-8.0		10.5-13.6	6 d	0.078	37.4	dw, whole fish		15,16	3 [8	31]
Piccharons fish 238U 0.5 0.7 0.5 0.7 4 [73] Plankfurous fish 0.9 GV 3460 F mw+dw 8 201 13.5 77 d 0.23 4.8 ww, whole fish ss 4 [73] Plankfurous fish upwells 60 days post hatch UQ-SQ, 3HQ F mw+dw 8 201 13.5 77 d 0.23 4.28 ww, whole fish ss 17 2 27 Salvelinus fontinaits upwells, 60 days post hatch UQ-SQ, 3HQ F mw+dw 8 201 13.5 77 d 0.6 3 ww, whole fish ss 17 2 27 Salvelinus fontinaits upwells, 60 days post hatch UQ-SQ, 3HQ F mw+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish ss 17 2 27 Salvelinus fontinaits upwells, 60 days post hatch UQ-SQ, 3HQ F mw+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish ss 17 2 27 <td>Oncorhynchus mykiss</td> <td>juvenile, 4.2 g, 7.0 cm</td> <td>232U</td> <td></td> <td>S</td> <td>nw</td> <td>7.5-8.0</td> <td></td> <td>10.5-13.6</td> <td>35 d</td> <td>0.078</td> <td>20.9</td> <td>dw, whole fish</td> <td></td> <td>16</td> <td>2 [8</td> <td>31]</td>	Oncorhynchus mykiss	juvenile, 4.2 g, 7.0 cm	232U		S	nw	7.5-8.0		10.5-13.6	35 d	0.078	20.9	dw, whole fish		16	2 [8	31]
Planktivrous fish 0.3-0.6 4 (75) Salvelinus fortinalis juvenile, 60 days post hatch U0,50,3H,0 F mw+dw 8 201 13.5 77 0.23 4.28 ww, whole fish ss 2 27 Salvelinus fortinalis juvenile, 60 days post hatch U0,50,3H,0 F mw+dw 8 201 13.5 77 0.6 3 ww, whole fish ss 17 2 Salvelinus fortinalis juvenile, 60 days post hatch U0,50,3H,0 F mw+dw 8 201 13.5 77 0.6 3 ww, whole fish ss 17 2 2 zw ww, whole fish ss 17 2 2 zw ww ss 17 2 2 2 zw zw z 2 2 z zw z z z z z z z z z z z z z z z z z z	Piscivorous fish		238U									0.5-0.7				4 [7	79]
Planktronus fish wereine, 60 days post harch UO_SO_3H_O F mv+dw 8 201 13.5 77.4 0.23 4 www, whole fish ss 12 2121 Salvelinis Grinnalis juvenile, 60 days post harch UO_SO_3H_O F mv+dw 8 201 13.5 77.4 0.3 4 www, whole fish ss 17 2 21 Salvelinis Grinnalis juvenile, 60 days post harch UO_SO_3H_O F mv+dw 8 201 13.5 77.4 0.6 3 4 www, whole fish ss 17 2 21 Salvelinius Grinnalis juvenile, 60 days post harch UO_SO_3H_O F mv+dw 201 13.5 77.4 2.2 2.7 ww, whole fish ss 17 2 2.2 2.7 ww, whole fish ss 17 2 2.2 2.7 www, whole fish ss 17 2 2.1 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 <td>Planktivorous fish</td> <td></td> <td>238U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.3-0.6</td> <td></td> <td></td> <td></td> <td>4 [7</td> <td>79]</td>	Planktivorous fish		238U									0.3-0.6				4 [7	79]
Salvelanis forwards juvenile, 60 days post hatch UQ_SQ_3H_0 F nw+dw 8 201 13.5 77 d 0.23 4.28 ww, whole fish ss 2 2 Salvelanis< fortinals	Planktivorous fish											8				4 [7	79]
Salvelings fontinalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dw 8 201 13.5 77 d 0.3 4 ww, whole fish is s 17 2 27 Salvelinus fontinalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dw 8 201 13.5 77 d 1.1 2.9 ww, whole fish is s 17 2 27 Salvelinus fontinalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dw 8 201 13.5 77 d 4.2 2.7 ww, whole fish is s 17 2 27 Salvelinus fontinalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish is s 17 2 27 Salvelinus fontinalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dw 8 201 13.5 77 d 4.2 2.5 mv, whole fish is s 17 2 27 Salvelinus fontinalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dw 8 201 13.5 77 d 4.2 2.0 <td< td=""><td>Salvelinus fontinalis</td><td>juvenile, 60 days post hatch</td><td>UO₂SO₄·3H₂O</td><td></td><td>F</td><td>nw+dw</td><td>/ 8</td><td>201</td><td>13.5</td><td>77 d</td><td>0.23</td><td>4.28</td><td>ww, whole fish</td><td>SS</td><td></td><td>2 [2</td><td>27]</td></td<>	Salvelinus fontinalis	juvenile, 60 days post hatch	UO₂SO₄·3H₂O		F	nw+dw	/ 8	201	13.5	77 d	0.23	4.28	ww, whole fish	SS		2 [2	27]
Salvelands fortunalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dv 8 201 13.5 77.d 0.6 3 ww, whole fish ss 17 2 [27] Salvelinus fortunalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dv 8 201 13.5 77.d 1.2 2.7 ww, whole fish ss 17 2 27] Salvelinus fortunalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dv 8 201 13.5 77.d 1.2 2.5 ww, whole fish ss 17 2 27] Salvelinus fortunalis juvenile, 60 days post hatch UQ, SQ, 3H, Q F nv+dv 8 201 13.5 77.d 1.1 2.9 ww, whole fish ss 1.8 3 78] Corbicula fuminea adult, 2-2.5 cm uranyl acetate ICP-MS S dtw 7.9±0.2 178 20 2.8 93500 0.6 ww, whole fish ss 1.8 3 78] Corbicula fuminea field collected frow 042-053 not specified ICP-MS Gtw 7.	Salvelinus fontinalis	juvenile, 60 days post hatch	UO ₂ SO ₄ ·3H ₂ O		F	nw+dw	/ 8	201	13.5	77 d	0.3	4	ww, whole fish	SS	17	2 [2	27]
Salvelinus fontinalisjuvenile, 60 days post hatchUO_SO_3H;OFnv+dw 820113.577 d1.12.9ww, whole fishss17227Salvelinus fontinalisjuvenile, 60 days post hatchUO_SO_3H;OFnv+dw 820113.577 d4.22.5ww, whole fishss17227Salvelinus fontinalisjuvenile, 60 days post hatchUO_SO_3H;OFnv+dw 820113.577 d4.22.5ww, whole fishss17227MolessiSalvelinus fontinalisjuvenile, 60 days post hatchUO_SO_3H;OFnv+dw 820113.577 d4.22.5ww, whole fishss17227MolessiSalvelinus fontinalisjuvenile, 60 days post hatchUO_SO_3H;OFnv+dw 820113.577 d4.22.5ww, whole fishss17227MolessiSalvelinus fontinalisjuvenile, 60 days post hatchUO_SO_3H;OFnv+dw 820113.577 d4.22.7Ww, whole fishss17227MolessiSalvelinus fontinalisuvenile, 60 days post hatchuvenile, 60 days post hatchUO_SO_3H;OFnv+dw 820113.577 d4.22.72.7Ww, whole fishss1722727Corbicula fumineadeldit, 2-2.5 cmurany intrateICP-MSSdtw7.940.2178202827 d	Salvelinus fontinalis	juvenile, 60 days post hatch	UO ₂ SO ₄ ·3H ₂ O		F	nw+dw	/ 8	201	13.5	77 d	0.6	3	ww, whole fish	SS	17	2 [2	27]
Salvelius fontnalis juvenile, 60 days post hatch UO,SQ, 3H,Q F nw+dw 8 201 13.5 77 d 2.2 2.7 ww, whole fish ss 17 2 [27] Salvelius fontnalis juvenile, 60 days post hatch UO,SQ, 3H,Q F nw+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish ss 17 2 [27] Salvelius fontnalis juvenile, 60 days post hatch UO,SQ, 3H,Q F nw+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish ss 17 2 [27] Salvelius fontnalis juvenile, 60 days post hatch UO,SQ, 3H,Q F nw+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish ss 17 2 [27] Salvelius fontnalis juvenile, 60 days post hatch UO,SQ, 3H,Q F nw+dw 8 201 13.5 77 d 4.2 2.2 X ww, whole fish ss 17 2 [27] Corbicula fuminea double, 2-2.5 cm urany latzetate ICP-MS 5 dw 7.950.2 18	Salvelinus fontinalis	juvenile, 60 days post hatch	UO ₂ SO ₄ ·3H ₂ O		F	nw+dw	/ 8	201	13.5	77 d	1.1	2.9	ww, whole fish	SS	17	2 [2	27]
Salvelinus fontinalis juvenile, 60 days post hatch UO_SO_23H_O F nw+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish ss 17 2 [27] Salvelinus fontinalis juvenile, 60 days post hatch UO_SO_23H_O F nw+dw 8 201 13.5 77 d 4.2 2.5 ww, whole fish ss 17 2 [27] Molluscs Corbicula fluminea dult, 2-2.5 cm uranyl acetate ICP-MS S dtw 7.9±0.2 178 20 28 + 27 d 93500 0.00 ww, whole body kin 18 3 [78] Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-MS S dtw 7.9±0.2 17 150 10 ww, whole body Scale (Signa) 12.2 [28] Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7.62 19-20 42 100 107 ww, whole body Scale (Signa) 12.2 [28] Corbicula fluminea field collected; fw 0.42-0.53 g not specified	Salvelinus fontinalis	juvenile, 60 days post hatch	UO ₂ SO ₄ ·3H ₂ O		F	nw+dw	/ 8	201	13.5	77 d	2.2	2.7	ww, whole fish	SS	17	2 [2	27]
Salvelnus fontinalis juvenile, 60 days post hatch UO ₃ SO ₄ /3H ₂ O F nw+dw 8 201 13.5 77 d 9.1 1.94 ww, whole fish ss 2 [27] Molluscs corbicula fluminea adult, 2-2.5 cm uranyl acetate ICP-MS S dtw 7.940.2 178 20 28 d 93500 0.30 ww, whole body kin 18 3 [78] Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 7 1500 10 ww, whole body SocylCasser 19,21 2 28 Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 7 1500 10 ww, whole body CocylCasser 19,21 2 28	Salvelinus fontinalis	juvenile, 60 days post hatch	UO ₂ SO ₄ ·3H ₂ O		F	nw+dw	/ 8	201	13.5	77 d	4.2	2.5	ww, whole fish	SS	17	2 [2	27]
Molluscs Corbicula fluminea adult, 2-2.5 cm uranyl acetate ICP-MS S dtw 7.9±0.2 178 20 28 + 27 d 3500 0.00 ww, whole body kin 18 3 [78] Corbicula fluminea adult, 2-2.5 cm uranyl acetate ICP-MS S dtw 7.9±0.2 178 20 28 d 93500 0.06 ww, whole body ks 18 3 [78] Corbicula fluminea field collected; tw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 14 500 10 ww, whole body Corbicula fluminea field collected; tw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 4 100 107 ww, whole body Corbicula fluminea field collected; tw 0.42-0.53 g not specified ICP-OES FT am 7.5 15 10 85 10 ww, whole body Corbicula fluminea field collected; tw 0.26 Corbicula fluminea <t< td=""><td>Salvelinus fontinalis</td><td>juvenile, 60 days post hatch</td><td>UO₂SO₄·3H₂O</td><td></td><td>F</td><td>nw+dw</td><td>/ 8</td><td>201</td><td>13.5</td><td>77 d</td><td>9.1</td><td>1.94</td><td>ww, whole fish</td><td>SS</td><td></td><td>2 [2</td><td>27]</td></t<>	Salvelinus fontinalis	juvenile, 60 days post hatch	UO ₂ SO ₄ ·3H ₂ O		F	nw+dw	/ 8	201	13.5	77 d	9.1	1.94	ww, whole fish	SS		2 [2	27]
Carbicula fluminea adult, 2-2.5 cm uranyl acetate ICP-MS S dtw 7.9±0.2 178 20 28 + 27 d 93500 0.30 www, whole body kin 18 3 [78] Carbicula fluminea field collected; fw 0.42-0.53 q not specified ICP-OES FT am 7 62 19-20 7 1500 40 www, whole body Cardicula fluminea field collected; fw 0.42-0.53 q not specified ICP-OES FT am 7 62 19-20 7 1500 10 www, whole body Cardicula fluminea field collected; fw 0.42-0.53 q not specified ICP-OES FT am 7 62 19-20 7 1500 10 www, whole body Cardicula fluminea field collected; fw 0.42-0.53 q not specified ICP-OES FT am 7 62 19-20 30 100 9 www, whole body Cardicula fluminea field collected; fw 0.42 www, whole body Cardicula fluminea field c	Molluscs																
Carbicula fluminea adult, 2-2.5 cm uranyl acetate ICP-MS S dtw 7.940.2 178 20 28 d 93500 0.06 ww, whole body ss 18 3 [78] Corbicula fluminea field collected; tw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 7 1500 10 ww, whole body Cordicula fluminea field collected; tw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 7 1500 10 ww, whole body Cordicula fluminea field collected; tw 0.42-0.53 g not specified ICP-OES FT am 8.1 62 19-20 42 100 107 ww, whole body Cordicula fluminea field collected; tw 0.42-0.53 g not specified ICP-OES FT am 8.1 62 19-20 42 100 107 ww, whole body Cordicula fluminea field collected; tw 0.26 g uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 100 ww, whole body Cordicula fluminea field collected; tw 0.26 g	Corbicula fluminea	adult, 2-2.5 cm	uranyl acetate	ICP-MS	S	dtw	7.9±0.2	178	20	28 + 27 c	1 93500	0.30	ww, whole body	kin	18	3 [7	78]
Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 14 500 40 www, whole body Cord/cutate 19,20 2 [28] Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 42 100 107 www, whole body Cord/cutate 19,21 2 [28] Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 30 100 9 www, whole body Cord/cutate 19,21 2 [28] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 10 500 ww, whole body Cord/cutate 32 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 <t< td=""><td>Corbicula fluminea</td><td>adult, 2-2.5 cm</td><td>uranyl acetate</td><td>ICP-MS</td><td>S</td><td>dtw</td><td>7.9±0.2</td><td>178</td><td>20</td><td>28 d</td><td>93500</td><td>0.06</td><td>ww, whole body</td><td>SS</td><td>18</td><td>3 [7</td><td>78]</td></t<>	Corbicula fluminea	adult, 2-2.5 cm	uranyl acetate	ICP-MS	S	dtw	7.9±0.2	178	20	28 d	93500	0.06	ww, whole body	SS	18	3 [7	78]
Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 7 150 10 ww, whole body Coral/Caster, 19,21 2 [28] Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 8.1 62 19-20 30 100 9 ww, whole body Cord/Caster, 19,21 2 [28] Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 6.5 62 10 10 9 ww, whole body Cord/Caster, 19,21 2 [82] Corbicula fluminea field collected; fw 0.26 g uranyl nitrate ICP-AES FT am 6.5 62 20 10 20 375 ww, whole body Cord/Caster, 23 2 [41] Corbicula fluminea field collected; fw 0.26 g uranyl nitrate ICP-AES FT am 6.5 62 20 10 500 22 ww, whole body	Corbicula fluminea	field collected; fw 0.42-0.53 g	not specified	ICP-OES	FT	am	7	62	19-20	14	500	40	ww, whole body	C_{org}/C_{wate}	r 19,20	2 [2	28]
Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 7 62 19-20 42 100 107 ww, whole body C _{and} (r) 12 [28] Corbicula fluminea field collected; fw 0.42-0.53 g unary initrate ICP-OES FT am 8.1 62 19-20 30 100 9 ww, whole body C _{and} (r) 22 3 [82] Corbicula fluminea field collected; fw 2.26 g urany initrate ICP-OES FT am 6.5 62 20 10 10 500 ww, whole body C _{and} (r) 24 141 Corbicula fluminea field collected urany initrate ICP-AES FT am 6.5 62 20 10 100 ww, whole body C _{and} (r) 24 141 Corbicula fluminea field collected urany initrate ICP-AES FT am 6.5 62 20 10 100 ww, whole body C _{and} (r) 24 1	Corbicula fluminea	field collected; fw 0.42-0.53 g	not specified	ICP-OES	FT	am	7	62	19-20	7	1500	10	ww, whole body	Corg/Cwate	r 19,21	2 [2	28]
Corbicula fluminea field collected; fw 0.42-0.53 g not specified ICP-OES FT am 8.1 62 19-20 30 100 9 www, whole body Cond/Creater 12 2 [8] Corbicula fluminea field collected uranyl nitrate ICP-OES FT am 6.5 62 20 10 10 500 www, whole body Cond/Creater 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 www, whole body Cond/Creater 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 www, whole body Cond/Creater 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 wwwy whole body Cond/Creater	Corbicula fluminea	field collected; fw 0.42-0.53 g	not specified	ICP-OES	FT	am	7	62	19-20	42	100	107	ww, whole body	Corg/Cwate	r 19,21	2 [2	28]
Corbicula fluminea field collected; fw 2.26 g uranyl nitrate ICP-DES FT am 7 57 15 10 85 13 www, whole body Cord/Custer 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 10 500 www, whole body Cord/Custer 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 www, whole body Cord/Custer 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 www, whole body Cord/Custer 23 2 [41] Corbicula fluminea field collected; wo.30 uranyl nitrate ICP-AES FT am 6.5 62 20 90 14.5 217 wwy, whole body	Corbicula fluminea	field collected; fw 0.42-0.53 g	not specified	ICP-OES	FT	am	8.1	62	19-20	30	100	9	ww, whole body	Coro/Cwate	r 19,21	2 [2	28]
Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 10 500 ww, whole body Condicateres 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 900 ww, whole body Cond/Cuater 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 ww, whole body Cond/Cuater 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 500 22 ww, whole body Cond/Cuater 2 [41] Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-AES FT am 6.5 204 20 15 45 217 ww, whole body Cond/Cuater </td <td>Corbicula fluminea</td> <td>field collected; fw 2.26 g</td> <td>uranyl nitrate</td> <td>ICP-OES</td> <td>FT</td> <td>am</td> <td>7</td> <td>57</td> <td>15</td> <td>10</td> <td>85</td> <td>13</td> <td>ww, whole body</td> <td>Coro/Cwate</td> <td>r 22</td> <td>3 [8</td> <td>32]</td>	Corbicula fluminea	field collected; fw 2.26 g	uranyl nitrate	ICP-OES	FT	am	7	57	15	10	85	13	ww, whole body	Coro/Cwate	r 22	3 [8	32]
Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 20 375 www, whole body Cord/Cuate 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 www, whole body Cord/Cuate 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 500 22 www, whole body Cord/Cuate 24 2 [41] Corbicula fluminea field collected; fw 0.76 g uranyl nitrate ICP-AES FT am 6.5 62 20 90 14.5 345 www, whole body Cord/Cuate 24 2 14] Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-OES FT am 6.5 202 0 2 63 160 www, whole body </td <td>Corbicula fluminea</td> <td>field collected</td> <td>uranyl nitrate</td> <td>ICP-AES</td> <td>FT</td> <td>am</td> <td>6.5</td> <td>62</td> <td>20</td> <td>10</td> <td>10</td> <td>500</td> <td>ww, whole body</td> <td>Corg/Cwate</td> <td>r 23</td> <td>2 [4</td> <td>41]</td>	Corbicula fluminea	field collected	uranyl nitrate	ICP-AES	FT	am	6.5	62	20	10	10	500	ww, whole body	Corg/Cwate	r 23	2 [4	41]
Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 100 ww, whole body Cong/Cwater 23 2 [41] Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 500 22 ww, whole body Cong/Cwater 23 2 [41] Corbicula fluminea field collected; fw 0.26 g uranyl nitrate ICP-AES FT am 6.5 62 20 90 14.5 345 ww, whole body Cong/Cwater 25 2 [43] Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-OES FT am 6.5 204 20 15 45 217 ww, whole body 20,72/Cwater 26 2 [42] Crobicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-OES FT am 7 62 20 42 63 160 ww,	Corbicula fluminea	field collected	uranyl nitrate	ICP-AES	FT	am	6.5	62	20	10	20	375	ww, whole body	Cord/Cwate	r 23	2 [4	41]
Corbicula fluminea field collected uranyl nitrate ICP-AES FT am 6.5 62 20 10 500 22 www, whole body Cond/Cwater 23 2 [41] Corbicula fluminea field collected; w 0.26 uranyl nitrate ICP-AES FT am 6.5 62 20 90 14.5 345 www, whole body Cond/Cwater 24 2 [41] Corbicula fluminea field collected; w 0.30 g uranyl nitrate ICP-OES FT am 6.5 62 20 42 63 160 www, whole body Cond/Cwater 26 2 [42] Corbicula fluminea field collected; m 0.30 g uranyl nitrate ICP-OES FT am 7 62 20 42 63 160 www, whole body 27,28 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 2.5 <	Corbicula fluminea	field collected	uranyl nitrate	ICP-AES	FT	am	6.5	62	20	10	100	100	ww, whole body	Cord/Cwate	r 23	2 [4	41]
Corbicula fluminea field collected; fw 0.26 g uranyl nitrate ICP-AES FT am 6.5 62 20 90 14.5 345 www, whole body Conf/Cwater 24 2 [41] Corbicula fluminea field collected; fw 0.76 g uranyl nitrate ICP-OES FT am 6.5 204 20 15 45 217 www, whole body Conf/Cwater 25 2 [43] Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-OES FT am 6.5 20 42 63 160 www, whole body Conf/Cwater 25 [43] Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-OES FT am 7 62 20 42 63 160 www, whole body Conf/Cwater 26 [42] Creates field collected; fw 0.30 g uranyl nitrate ICP-OES FT tw 8.1 20 10 0.9 0.1340 www, whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not sp	Corbicula fluminea	field collected	uranyl nitrate	ICP-AES	FT	am	6.5	62	20	10	500	22	ww, whole body	Corg/Cwate	r 23	2 [4	41]
Corbicula fluminea field collected; fw 0.76 g uranyl nitrate ICP-OES FT am 6.5 204 20 15 45 217 ww, whole body Cord/Cwater 25 2 [43] Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-OES FT am 7 62 20 42 63 160 ww, whole body Cord/Cwater 25 2 [43] Constructes Image: State ICP-OES FT am 7. 62 20 42 63 160 ww, whole body Cord/Cwater 25 2 [43] Crustaceans ICP-OES FT tw 8.1 20 10 0.9 0.1340 ww, whole body 27,28 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 0.9 0.1340 ww, whole body 28,31 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10<	Corbicula fluminea	field collected; fw 0.26 g	uranyl nitrate	ICP-AES	FT	am	6.5	62	20	90	14.5	345	ww, whole body	C_{orq}/C_{wate}	_{er} 24	2 [4	41]
Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-AES FT am 7 62 20 42 63 160 ww, whole body Com/Cwater 26 2 [42] Corbicula fluminea field collected; fw 0.30 g uranyl nitrate ICP-AES FT am 7 62 20 42 63 160 ww, whole body Com/Cwater 26 2 [42] Crustaceans Connectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 0.9 0.1340 ww, whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 2.5 0.0750 ww, whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 2.5 0.0750 ww, whole body 28,33 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified	Corbicula fluminea	field collected; fw 0.76 g	uranyl nitrate	ICP-OES	FT	am	6.5	204	20	15	45	217	ww, whole body	C_{orq}/C_{wate}	r 25	2 [4	43]
Crustaceans Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 0.9 0.1340 ww, whole body 27,28 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 30 0.9 0.0120 ww, whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 2.5 0.0750 ww, whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 30 2.5 0.0220 ww, whole body 28,31 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0200 ww, whole body 28,33 2 [28] Orconecte	Corbicula fluminea	field collected; fw 0.30 g	uranyl nitrate	ICP-AES	FT	am	7	62	20	42	63	160	ww, whole body	Corg/Cwate	r 26	2 [4	42]
Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 0.9 0.1340 www.whole body 27,28 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 0.9 0.0120 www.whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 0.9 0.0120 www.whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 2.5 0.0750 www.whole body 28,31 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0200 www.whole body 28,29,32 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20	Crustaceans																
Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 0.9 0.0120 www.whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 2.5 0.0750 www.whole body 28,29,30 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 2.5 0.0220 www.whole body 28,31 2 [28] Orconectes limosus 12 m adult, 4, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0200 www.whole body 28,29,32 2 [28] Orconectes limosus 12 m adult, 4, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0050 www.whole body 28,29,34 2 [28] Orconectes limosus 12 m adult, 4, 10.7 g not specified ICP-OES FT tw 8.1 20 <	Orconectes limosus	12 m adult, ೆ, 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	10	0.9	0.1340	ww, whole body		27,28	2 [2	281
Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 2.5 0.0750 www.whole body 28,31 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 2.5 0.0220 www.whole body 28,31 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0200 www.whole body 28,29,32 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0200 www.whole body 28,29,34 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 www.whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, 3, 10	Orconectes limosus	12 m adult, 3, 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	30	0.9	0.0120	ww, whole body		28,29,30	2 [2	281
Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 2.5 0.0220 ww, whole body 28,29,32 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0200 ww, whole body 28,29,32 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 3.4 0.0050 ww, whole body 28,29,34 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 ww, whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 ww, whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20	Orconectes limosus	12 m adult, 3, 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	10	2.5	0.0750	ww. whole body		28.31	2 [2	281
Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 3.4 0.0020 ww, whole body 28,33 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 3.4 0.0050 ww, whole body 28,29,34 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 ww, whole body 28,29,34 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 ww, whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, 4, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 ww, whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, 4, 10.7 g not specified ICP-OES FT tw 8.1 20	Orconectes limosus	12 m adult. 3. 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	30	2.5	0.0220	ww. whole body		28.29.32	2 2 17	281
Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 30 3.4 0.0205 www.whole body 28,29,34 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 www.whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 www.whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, 3, 10.7 g not specified ICP-OES FT tw 8.1 20 10 19.6 0.1020 www.whole body 28,36 2 [28] Orconectes limosus 12 m adult, 4, 10.7 g not specified ICP-OES FT tw 8.1 20 10 19.6 0.1020 www.whole body 28,37 2 [28] Orconectes limosus 12 m adult, 4, 10.7 g not specified ICP-OES FT tw 8.1 20	Orconectes limosus	12 m adult. 3. 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	10	3.4	0.0200	ww. whole body		28.33	2 [2	281
Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 www.whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 10.7 0.0120 www.whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 19.6 0.1020 www.whole body 28,29,35 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 19.6 0.1020 www.whole body 28,37 2 [28] Orconectes limosus 12 m adult, d, 10.7 g not specified ICP-OES FT tw 8.1 20 10 20,20 0.0650 www.whole body 28,37 2 [28]	Orconectes limosus	12 m adult. 3. 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	30	3.4	0.0050	ww. whole body		28.29.34	1 2 17	281
$\begin{array}{c ccc} \hline Dream result (a) result (b) result (c) res$	Orconectes limosus	12 m adult. 3. 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	10	10.7	0.0120	ww. whole body		28.29.3	5 2 [2	281
Creater lines 12 m adult 3, 10.7 g not specified ICP-DES FT tw 8,1 20 10 20.2 0.0650 www.whole body 28,37 2 [28]	Orconectes limosus	12 m adult. 3. 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	10	19.6	0.1020	ww. whole body		28.36	2 [2	281
	Orconectes limosus	12 m adult. 3. 10.7 g	not specified	ICP-OES	FT	tw	8.1		20	10	20.2	0.0650	ww. whole body		28.37	2 [2	281

7

Notes

1	Water concentration not measured, fish load not exceeding 1 g/L, fish not fed
	during exposure, kinetic fit through data

- 2 Data did not fit model
- Data do not follow first-order kinetics;
- 3 4 5 Last point 15 times higher; fed 1% of body weight per day
- Straight line; fed 1% of body weight per day
- Fed 1% of body weight per day 6

- Kinetic fit through uptake data Feeding experiment; fed 5% of body weight per day; water concentration 8 measured
- 9
- Fish fed 2% of body weight per day Kinetic data did not fit well, half-lifes in the order of 3 d for liver up to more 10 than 10 d for brain and muscles

11	Fish fed twice a week; five fish/L; water concentrations possibly not measured; reported concentrations do not match BCF	25
12	Calculated from graph in paper, exposure concentration was monitored and corrected to nominal concentrations	26
13	Fed with Artemia nauplii	
14	Kinetic fit through uptake data; water concentrations were not analysed	
15	Exposure very short	27
16	Method of analysis not reported	
17	Estimated from graph in paper	28
18	Animals fed twice a week; five fish/L; water concentrations possibly not	29
	measured; reported concentrations do not match BCF	30
19	Concentrations as dissolved U	
20	Hardness calculated from reported concentrations of Ca ²⁺ and Mg ²⁺ ; BCF	31
	calculated from reported concentrations in whole body and nominal	
	concentrations in water	32
21	Average of 10 individuals	
22	Concentration in whole body calculated as sum of gills, viscera, mantle and	33
	muscle, using reported weight of individual body parts and measured	
	concentrations (read from graph); equilibrium not reached	34
23	BCF calculated from reported nominal exposure concentration and whole body	
	residue read from graph; authors indicate that accumulation after 6 h is not	35
	different from 10 d, indicating steady state.	
24	Exposure concentration expressed as geometric mean of reported average	36
	concentrations in 3 replicates; BCF calculated from reported concentration in	
	whole body of 5 μ g/g, calculated by author on the basis of sum of organs;	37
	concentration reported to be constant over time	

- Concentration expressed as mean measured dissolved U; corresponding total 52 μ g/L; concentration in organisms read from digitised graph using TechDig; equilibrium reached, internal concentrations similar at t=15 similar to t=7
- Exposure concentration based on mean measured concentration of U (nominal $100 \mu g/L$); concentration in whole body calculated from sum of organs; BCF reported by author in text
- Crayfish fed 1 clam/day for 10 d; food ration 3-9% of body mass; clams previously exposed to water with 100 µg U/L for 30 d
- BMF reported by author as total burden in crayfish divided by ingested burden Moulting observed
- Crayfish fed 1 clam/day for 30 d; food ration 3-9% of body mass; clams previously exposed to water with 100 µg U/L for 30 d;
- 1 Crayfish fed 1 clam/day for 10 d; food ration 3-9% of body mass; clams previously exposed to natural water with 12.4 µg U/L for 42 d;
- 2 Crayfish fed 1 clam/day for 30 d; food ration 3-9% of body mass; clams previously exposed to natural water with 12.4 µg U/L for 42 d;
- 3 Crayfish fed 1 clam/day for 10 d; food ration 3-9% of body mass; clams previously exposed to natural water with 4.2 µg U/L for 42 d;
- Crayfish fed 1 clam/day for 30 d; food ration 3-9% of body mass; clams previously exposed to natural water with 4.2 µg U/L for 42 d;
- Crayfish fed 1 clam/day for 10 d; food ration 3-9% of body mass; clams previously exposed to water with 100 µg U/L for 42 d;
- 6 Crayfish fed 1 clam/day for 10 d; food ration 3-9% of body mass; clams previously exposed to water with 500 µg U/L for 14 d;
- 7 Crayfish fed 1 clam/day for 10 d; food ration 3-9% of body mass; clams previously exposed to water with 1500 μg U/L for 7 d
| Table A2.3 Fe | edina | Bioconcentration | factors for | aquatic | organisms |
|---------------|-------|------------------|-------------|---------|-----------|
| | | | | | |

Species	Species properties	Test substance	Purity	/ Analysis	Test	Test	pН	Hardness/	Т	Exposure	Exposure	BMF	BMF type	Metho	Note Ri	Ref.
					type	water	r	Salinity		time	concentration			d	S	
			[%]					[mg/l]	[°C]	[d]	[µg/g]	[kg _{d.w} /kg _{w.w.}]				
Coregonus clupeaformis	3.5 y, 625±15 g	uranyl acetate dihydrate, 99.8%)	Argon Plasma Opt.	FT	tap	7.7±0.01	90.4	10.9±0.	100 d	982±71.7	0.0041	ww, whole body	kin	1	[83]
	and 34.9±0.3 cm,	238U, 0.3% 235U, 0.187 µCi/g		Em. Spectr.					1							
Coregonus clupeaformis	3.5 y, 625±15 g	uranyl acetate dihydrate, 99.8%)	Argon Plasma Opt.	FT	tap	7.7±0.01	90.4	10.9±0.	100 d	9892±754	0.0078	ww, whole body	kin	1	[83]
	and 34.9±0.3 cm,	238U, 0.3% 235U, 0.187 µCi/g		Em. Spectr.					1							
Danio rerio	adult, male	²³³ U		alpha spectroscopy	FT	tap	8.1	241.6	26±1	20 d	4.8±2.5	0.0054	ww, whole body	SS	2	[41]
Danio rerio	adult, female	²³³ U		alpha spectroscopy	FT	tap	8.1	241.6	26±1	20 d	4.8±2.5	0.0027	ww, whole body	SS	2	[41]
Danio rerio	adult, male	²³³ U		alpha spectroscopy	FT	tap	8.1	241.6	26±1	20 d	58.2±11.96	0.0022	ww, whole body	SS	2	[41]
Danio rerio	adult, female	²³³ U		alpha spectroscopy	FT	tap	8.1	241.6	26±1	20 d	58.2±11.96	0.0022	ww, whole body	SS	2	[41]
Danio rerio	adult, male	depleted $UO_2(NO_3)_2 \cdot 6H_2O$		ICP-MS/ICP-AES	FT	tap	8.1	241.6	26±1	20 d	58.2±11.96	0.0026	ww, whole body	SS	2	[41]
Danio rerio	adult, female	depleted $UO_2(NO_3)_2 \cdot 6H_2O$		ICP-MS/ICP-AES	FT	tap	8.1	241.6	26±1	20 d	58.2±11.96	0.0020	ww, whole body	SS	2	[41]
Danio rerio	adult, male	depleted UO ₂ (NO ₃) ₂ ·6H ₂ O		ICP-MS/ICP-AES	FT	tap	8.1	241.6	26±1	20 d	448±79	0.0008	ww, whole body	SS	2,3	[41]
Danio rerio	adult, female	depleted UO ₂ (NO ₃) ₂ ·6H ₂ O		ICP-MS/ICP-AES	FT	tap	8.1	241.6	26±1	20 d	448±79	0.0015	ww, whole body	SS	2,3	[41]

Notes

Whole body concentrations estimated from organ data and detection limits; fed 0.8% of body weight per day Fed 5% of body weight per day $17\pm6.5 \ \mu g/L$ in water 1

2 3

RIVM Letter report 270006003

Appendix 3 - Detailed ecotoxicity data

Legend to data tables	Species
	properties
Α	Test water analysed Yes/No
Test type	S = static; R = renewal; F = flow-through
Test water	am = artificial medium; dtw = dechlorinated tap water; dw = de-ionised/dechlorinated/distilled water; nw = natural water; rw = reconstituted (sea)water; rtw =
	reconstituted tap water; tw = tap water
Ri	Reliability index, see section 2.2

Table A3.1 Acute toxicity for freshwater organisms

Species	Species properties	A Test compound	Purity	7 Test type	Test water	рН	Т	Hardnes s	Alkalinity CaCO ₃	DOC	Exp. time	Crit.	Endpoint	Value	Ri	Notes	Ref
			[%]				[°C]	[mg/L]	[mg/L]	[mg/L]				[µg U/L]			
Bacteria																	
anaerobic sludge		y UO ₂ Cl ₂ x 3H ₂ O	>99	S	am	7.5	30				6 d	EC50	nitrate reduction	35000	3	12,14	[84]
anaerobic sludge		y UO ₂ Cl ₂ x 3H ₂ O	>99	S	am	7.5	30				2 d	EC50	nitrate reduction	48000	3	12,15	[84]
anaerobic sludge		y UO ₂ Cl ₂ x 3H ₂ O	>99	S	am	7.5	30				13 d	EC50	nitrate reduction	76000	3	12,16	[84]
mixed culture	thiosulfate adapted	y UO ₂ Cl ₂ x 3H ₂ O	>99	S	am	7.5	30				14 d	EC50	methane prod.	38000	3	12,14	[84]
Pseudomonas aeruginosa		y UO ₂ (NO ₃) ₂ x 6H ₂ C)	S	am	7.4		40			24 h	EC50	growth	< 10000	3	2,17,18	[85]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			28 h	IC50	growth rate	37260	3	1,19,23	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			24 h	IC50	growth rate	27810	3	1,20,23	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			22 h	IC50	growth rate	24570	3	1,21,24	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			46 h	IC50	growth rate	51	3	1,22,25	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			46 h	IC50	growth rate	41040	3	1,26	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			28 h	EC50	growth rate	28500	3	1,19,23,27	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			24 h	EC50	growth rate	28300	3	1,20,23,27	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			22 h	EC50	growth rate	16200	3	1,21,24,27	[86]
Pseudomonas sp.		n UO ₂ Cl ₂		S	am	7	20	7			46 h	EC50	growth rate	44.6	3	1,22,25,27	[86]
Thiobacillus ferrooxidans		n UO ₂ SO ₄ x 3H ₂ O		S	am	1.3	28	165			48 h	EC50	oxidation	103500	3	1	[87]
Thiobacillus ferrooxidans		n UO ₂ SO ₄ x 3H ₂ O		S	am	1.8-2.2	30				80 mir	1 EC50	oxygen cons.	16400000	3	1,28,29	[87]
Zoogloea ramigera		n UO2(NO3)2 x 6H20)	S	am	6-7	24	81			24 h	EC50	growth rate	19	3	1,13,30	[88]
Zoogloea ramigera		n UO ₂ (NO ₃) ₂ x 6H ₂ ()	S	am	6-7	24	81			66 h	EC50	growth rate	75000	3	1,31	[88]
Algae																	
Chlorella sp.	wild type, 4-5 days	y UO ₂ SO ₄ x 3H ₂ O		S	am	7.0	27	8		< 0.2	72 h	EC50	growth rate	56	2	32	[89]
Chlorella sp.	wild type, 4-5 days	y UO ₂ SO ₄ x 3H ₂ O		S	am	7.0	27	40		< 0.2	72 h	EC50	growth rate	72	2	32	[89]
Chlorella sp.	wild type, 4-5 days	y UO ₂ SO ₄ x 3H ₂ O		S	am	7.0	27	100		< 0.2	72 h	EC50	growth rate	150	2	32	[89]
Chlorella sp.	wild type, 4-5 days	y UO ₂ SO ₄ x 3H ₂ O		S	am	7.0	27	400		< 0.2	72 h	EC50	growth rate	270	2	32	[89]
Chlorella sp.						7.0		8			48 h	EC50		23	4	4	[89]
Chlorella sp.						7.0		400			48 h	EC50		230	4	4	[89]
Chlorella sp.		y UO ₂ SO ₄ x 3H ₂ O		S	am	5.7	27	2-4			72 h	EC50	growth rate	78	3	33	[90]
Chlorella sp.		y UO ₂ SO ₄ x 3H ₂ O		S	am	6.5	27	2-4			72 h	EC50	growth rate	44	3	33	[90]
Chlorella sp.		у	ag	S	am	6.4-6.6	29	3.6	2.63		72 h	EC50	growth rate	74	2	34	[91]
Chlorella sp.		у	ag	S	nw	6.5-6.8	29	3.9	11	4.1	72 h	EC50	growth rate	177	2	34	[91]
Chlorella sp.		у	ag	S	nw	6.2-6.4	29	3.9		3.4	72 h	EC50	growth rate	166	2	34	[91]
Chlorella sp.		у	ag	S	nw	6.4-6.6	29	3.9	7	8.1	72 h	EC50	growth rate	238	2	34	[91]
Chlorella sp.		у	ag	S	nw	6.3-6.6	29	3.9	<5	2.6	72 h	EC50	growth rate	137	2	34	[91]

Species	Species A	A Test	Purity	Test	Test	pН	Т	Hardnes	Alkalinity	DOC	Exp.	Crit.	Endpoint	Value	Ri Notes	Ref
	properties	compound		type	water			s CaCO	CaCO ₃		time					
			[%]				[°C]	[ma/L]	[ma/L]	[ma/L]				[ua U/L]		
Chlorella sp.			[]				[-]	L	L	L		FC25	growth rate	120	4 4	[7]
Chlamydomonas reinhardtii	١	/ UO ₂ (NO ₂) ₂ x 6H ₂ O		S	nw	7.7	24	15			72 h	EC50	growth rate	> 15000	3 6.17.35	[92]
Chlamydomonas reinhardtii		- <u>-</u>				5					72 h	EC50	3 · · · · · ·	730	4	[92]
Chlamydomonas reinhardtii	exp. Growth phase					5					48 h	EC50		68.3	4 4	[6]
Chlamvdomonas reinhardtii	exp. Growth phase					7					48 h	EC50		4000	4 4	[6]
Cryptomonas erosa	· · · · · · · · · · · · · · · · · · ·	1		R		7.1-9.1	20.8	101			6 d	EC50		1260	4 4	[6]
Euglena gracilis	cells from a 4 day old cult.	/ UO2SO4 x 3H2O		S	am	6	28				96 h	EC50	growth	8900	3 2,36	[93]
Euglena gracilis	cells from a 4 day old cult.	/ UO ₂ SO ₄ x 3H ₂ O		S	am	6	28				96 h	EC50	growth	3500	3 2,37	[93]
Euglena gracilis	cells from a 4 day old cult.	/ UO ₂ SO ₄ x 3H ₂ O		S	am	6	28				96 h	EC50	growth	>4000	3 2,38	[93]
Euglena gracilis	cells from a 4 day old cult.	/ UO ₂ SO ₄ x 3H ₂ O		S	am	6	28	0.7	50		96 h	EC50	growth	300	3 2,39	[93]
Euglena gracilis	cells from a 4 day old cult.	/ UO ₂ SO ₄ x 3H ₂ O		S	am	6	28	0.7	50	10	96 h	EC50	growth rate	57	2 3,39	[93]
Euglena gracilis	cells from a 4 day old cult.	/ UO ₂ SO ₄ x 3H ₂ O		S	am	6	28	0.7	50	30	96 h	EC50	growth rate	254	2 3,39	[93]
Scenedesmus subspicatus											5 d	EC50		36300	4	[94]
Macronhyta																
Lemna aeguinoctialis	N N	/ U02SO4 x 3H2O		R	am	6.5	27	40	16		96 h	EC50	growth rate	758	2 40	[95]
Lemna aequinoctialis	r	UO ₂ SO₄ x 3H ₂ O		S	nw	6.7-7.5	29	3.9-4.8		3-4	96 h	IC50	growth rate	704	2 41	[96]
Lemna aequinoctialis		/ U0 ₂ SO₄ x 3H ₂ O		S	nw	6.6-6.9	29	3.9-4.8		3-4	96 h	IC50	growth rate	>880	3 42	[96]
Lemna aequinoctialis		$\frac{1002004 \times 31120}{1002504 \times 31120}$		S	nw	6.6-6.9	29	3.9-4.8		3-4	96 h	IC50	growth rate	1479	3 42	[96]
Lemna aequinoctialis		/ U0 ₂ SO₄ x 3H ₂ O		S	nw	6.6-6.9	29	3.9-4.8		3-4	96 h	IC50	growth rate	>1352	3 42	[96]
Lemna gibba		$(UO_2(NO_2)_2 \times 6H_2O_2)$	ad.	R	am		24/16	6			21 d	EC50	growth rate	330	3 2.17.29.43.45	[97]
Lemna gibba		$(UO_2(NO_2)_2 \times 6H_2O_2)$	ad.	R	am		24/16	6			21 d	EC50	growth rate	78	3 2.17.29.43.46	[97]
Lemna gibba		/ UO ₂ (NO ₃) ₂ x 6H ₂ O	ad.	R	am		24/16	6			21 d	EC50	growth rate	338	3 2.17.29.43.47	[97]
Lemna gibba		$(UO_2(NO_2)_2 \times 6H_2O_2)$	ag.	R	am		24/16	6			21 d	EC50	growth rate	1271	3 2.17.29.43.48	[97]
Lemna gibba		$(UO_2(NO_2)_2 \times 6H_2O_2)$	ag.	R	am		24/16	6			21 d	EC50	growth rate	>7000	3 2,17,29,43,44,49	[97]
Lemna minor		$(UO_2(NO_2)_2 \times 6H_2O_2)$	- 3.	S		5.8-7.4	,	35	7-9		7 d	EC50	frond no	7400	4 3.4	[6]
Lemna minor		/ UO ₂ (NO ₃) ₂ x 6H ₂ O		S		5.8-7.4		35	7-9		7 d	EC50	dry weight	13100	4 3,4	[6]
Ctenonhora																
Hydra viridissima	1	1		R	am	6	27	6.6	16		96 h	EC50	nonulation growth	114	2 50	[98]
Hydra viridissima		1		R	am	6	27	165	10		96 h	EC50	population growth	177	2 50	[98]
Hydra viridissima		1		R	am	6	27	165			96 h	EC50	population growth	171	2 50	[98]
Hydra viridissima		1		R	am	6	27	330			96 h	EC50	population growth	219	2 50	[98]
Hydra viridissima	adult	/	ag.	R	nw	6	27	3.9			96 h	EC50	population growth	95	2 3,10,11	[99]
Newstada																
Capporbic clogans	wild type			c							20 mir		mortality	15000	4 1 E1	[100]
Caenorbis elegans	etrain mtl 1 KO			5							20 mir		mortality	13900		[100]
Caenorbis elegans	strain mt/02 KO (VC128)			5					7.0		20 mir		mortality	4000	4 1,51	[100]
Caenorbis elegans	mtl-1 and mtl-2 double KO			5					7-9		30 mir	1 LC50	mortality	3700	4 1,51	[100]
		002/102 × 21120		5					, ,		50 1111	1 2000	moreancy	3700	1 1,51	[100]
Mollusca							20				0.6	1.050		1.075 - 05	4* 4 52 04	
Corbicula sp.	1			~		7.00	20	170			96 h	LC50	mortality	1.8/E+06	4* 1,52,91	[101]
Corbicula fluminea	adult, shell length 2-2.5 cm r	$1 UO_2AC_2 \times 2H_2O$		S	dtw	7.86	20	1/8			96 h	LC50	mortality	1.8/E+06	3 1	[/8]
Corbicula fluminea	shell length 27.5 mm, wet weight 0.68 g	$/ UO_2(NO_3)_2 \times 6H_2O_2(NO_3)_2 \times 6H_2O_2(NO_3)$		S	am	5.5	20	207			5 h	EC50	valve closure	11.9	3 8,53,54	[102]
Cordicula fluminea	sneii length 27.5 mm, wet weight 0.68 g	$1 UU_2(INU_3)_2 \times 6H_2O$		5	am	6.5	20	203			5 n	EC50	valve closure	30.9	3 8,53,54,8/	[102]
Corbicula fluminea)	/ UO ₂ (NO ₃) ₂ x 6H ₂ O		<u>F</u>	am		15	58			10 d	NOEC	valve activity	< 86	3 2,7,55,56, 57,58,8	/ [103]
veiesunio angasi	field coll. unpoll. site	/ UU ₂ SU ₄		<u>r</u>	am	5	28	3.9		0	48 n	EC50	valve movement	103	3 8,11,59,60,87	[104]
velesunio angasi	field coll, unpoll, site	<u>/ UU2SU4</u>		<u>г</u>	am	5	20	3.9		<u>ن./</u>	48 N	EC50	valve movement	12/	<u>3 8,11,59,60,87</u>	[104]
veresunio angasi	field coll, unpoll, site	<u>/ UU₂SU₄</u>		<u>г</u>	am	5	20	3.9		8.9	48 N	EC50	valve movement	124	<u>3 8,11,59,60,87</u>	[104]
Velesunio angasi	field coll, unpoll, site	$\frac{100_2 50_4}{1000000000000000000000000000000000000$		<u>г</u>	am	5.5	28	3.9		0	48 N	EC50	valve movement	124		[104]
Velesunio angasi	field coll, unpoll, site	/ UU ₂ SU ₄		<u>г</u>	am	5.5	28	3.9		27	48 1	EC50	valve movement	144	2 0 11 E0 60 07	[104]
Velesunio angasi	field coll uppell cite	<u> </u>		<u>г</u>	dili	5.5	20	3.9		3./	40 II 40 h	EC50	valve movement	120		[104]
Velecunio angasi	field coll unpoll site	/ UO ₂ SO ₄		F	ann	5.0	20	3.9		0.9	40 II 18 h	ECE0	valve movement	756	3 8 11 50 60 97	[104]
veresuillo aliyasi	neiu con, unpon, site	002304		1	dili	J.0	20	J.7		U	+0 11	LCJU	varve movement	200	2 0,11,39,00,07	1104

Species	Species	А	Test	Purity T	est	Test	pН	Т	Hardnes	Alkalinity	DOC	Exp.	Crit.	Endpoint	Value	Ri Notes	Ref
	properties		compound	ŕt	ype	water	•		S	CaCO₃		time		•			
				F0/ 3				[00]	CaCO ₃	Free = /1]	[F		
Valacunia angosi	field call uppell cite		110.50	[%]			6	[-[]		[IIIg/L]	[IIIg/L]	40 h	ECEO	volvo movoment	[µg U/L]	2 9 11 50 60 97	[104]
Velesunio angasi	field coll, unpoll, site	y		F		am	6	20	3.9		37	40 II 48 h	EC50	valve movement	726	3 8 11 59 60 87	[104]
Velesunio angasi	field coll, unpoll, site	<u> </u>		F		aiii am	6	20	3.9		3.7 8.0	40 II 48 h	EC50	valve movement	1082	3 8 11 59 60 87	[104]
Velesunio angasi		<u>y</u>	UO-SO- x 3H-O	F		am	6	20	3.9		8.9	40 H	EC50	valve movement	559	3 8 59 60 87	[104]
Velesunio angasi		y y	UO2504 x 3H20	F		am	6	20	3.9		8.9	48 h	EC50	valve movement	395	3 8 59 60 87	[105]
Velesunio angasi		y y		F	:	am	6	28	3.9		8.9	48 h	EC50	valve movement	554	3 8 59 60 87	[105]
Velesunio angasi		/ V	U02504 x 3H20	F		am	6	28	3.9		8.9	48 h	EC50	valve movement	387	3 8,59,60,87	[105]
Velesunio angasi	36.8 mm: field coll, unpoll, site	v	U02S04 x 3H20	F	:	am	6	28	3.9		8.9	48 h	EC50	valve movement	509	3 8.59.60.87	[105]
Velesunio angasi	36.8 mm; field coll, unpoll, site	v	U02S04 x 3H20	F	:	am	6	28	3.9		8.9	48 h	EC50	valve movement	354	3 8.59.60.87	[105]
Velesunio angasi	53.4 mm; field coll, unpoll, site	v	U02S04 x 3H20	F		am	6	28	3.9		8.9	48 h	EC50	valve movement	555	3 8,59,60,87	[105]
Velesunio angasi	53.4 mm; field coll. unpoll. site	ý	UO2SO4 x 3H2O	F	: ;	am	6	28	3.9		8.9	48 h	EC50	valve movement	392	3 8,59,60,87	[105]
Velesunio angasi	61.3 mm; field coll. unpoll. site	ý	UO2SO4 x 3H2O	F		am	6	28	3.9		8.9	48 h	EC50	valve movement	604	3 8,59,60,87	[105]
Velesunio angasi	61.3 mm; field coll. unpoll. site	ý	U02S04 x 3H20	F	: ;	am	6	28	3.9		8.9	48 h	EC50	valve movement	426	3 8,59,60,87	[105]
Velesunio angasi	adult	ý		F	: ;	am	5	28	3.9		< 0.2	48 h	EC50	behaviour	78	3 61,87	[99]
Velesunio angasi	adult	ý		F		am	5	28	3.9		3.7	48 h	EC50	behaviour	99	3 61,87	[99]
Velesunio angasi	adult	ý		F	:	am	5	28	3.9		8.9	48 h	EC50	behaviour	171	3 61,87	[99]
Velesunio angasi	adult	ý		F	:	am	5.3	28	3.9		< 0.2	48 h	EC50	behaviour	93	3 61,87	[99]
Velesunio angasi	adult	У		F		am	5.5	28	3.9		< 0.2	48 h	EC50	behaviour	111	3 61,87	[99]
Velesunio angasi	adult	У		F		am	5.5	28	3.9		3.7	48 h	EC50	behaviour	167	3 61,87	[99]
Velesunio angasi	adult	У		F		am	5.5	28	3.9		8.9	48 h	EC50	behaviour	352	3 61,87	[99]
Velesunio angasi	adult	У		F		am	5.8	28	3.9		< 0.2	48 h	EC50	behaviour	185	3 61,87	[99]
Velesunio angasi	adult	у		F		am	6	28	3.9		< 0.2	48 h	EC50	behaviour	393	3 61,87	[99]
Velesunio angasi	adult	У		F		am	6	28	3.9		3.7	48 h	EC50	behaviour	526	3 61,87	[99]
Velesunio angasi	adult	У		F		am	6	28	3.9		8.9	48 h	EC50	behaviour	829	3 61,87	[99]
Annelida																	
Tubifex tubifex	field collected	n	UO2AC2 x 2H2O	ra R	2	nw	7.6	30	245	400		96 h	LC50	mortality	2050	3 1.86	[106]
				2													
Crustacea																	
Ceriodaphnia dubia	≤ 24 h	у	UO ₂ (NO ₃) ₂ x 6H ₂ O	R	2	nw	6.9-7.8	26	6.1	1.1		48 h	LC50	mortality	60	2 3,9	[107]
Ceriodaphnia dubia	≤ 24 h	У	$UO_2(NO_3)_2 \times 6H_2O_3$	R	{	nw	6.2-6.8	25-26	5 3.9	3.5		48 h	LC50	mortality	89	2 3,9	[107]
Ceriodaphnia dubia	≤ 24 h	У	$UO_2(NO_3)_2 \times 6H_2O_3$	R	2	nw	6.2-6.4	24	3.0-4.0	1.2-2.1		48 h	LC50	mortality	45	2 3,9,62	[107]
Ceriodaphnia dubia	≤ 24 h	у	$HUO_2PO_4 \times 4H_2O$	R	2	nw	6.3-6.5	24	3.4-3.8	2.1-2.2		48 h	LC50	mortality	100	2 9,63	[107]
Ceriodaphnia dubia	≤ 24 h	У	$HUO_2PO_4 \times 4H_2O$	R		nw	5.9-6.4	24-25	3.8-11.5	<u> </u>		48 h	LC50	mortality	/0	2 3,9,64	[107]
Ceriodaphnia dubia	≤ 24 h	У	$HUO_2PO_4 \times 4H_2O$	R	{	nw	5.7-6.5	24-25	2.0-3.0	1.0-2.0	•	48 h	LC50	mortality	100	2 3,9	[107]
Ceriodaphnia dubia	≤ 24 n	y	HUO ₂ PO ₄ X 4H ₂ O	К		nw	5.7-6.4	24-25	5 2.0-4.0	<0.05-1.	0	48 h	LC50	mortality	>260	3 3,9,65	[107]
Ceriodaphnia dubia	≤ 24 n	у	HUO2PO4 X 4H2O	K	(nw	6./-/.1	25-26	3.9-5.1	3		48 n	LC50	mortality	190	2 2,7,9	[107]
	S 24 h	у		K		nw	0.1-0.4	25	4.0-4.1	120		48 N	LC50	mortality	50	2 7,9,66	[107]
	field collected	<u> </u>		× 00 D		nw	8.30	25	1/6	126		96 N	EC50	mortality	10500	3 6/	[108]
Cypris subglobosa	field collected			> 90 R			7.4-7.7	20-22	2 245	400		24 II 40 h	ECSU		0.19	3 1	[109]
Cypris subgiobosa		N		290 R		nw	7.4-7.7	20-22	4 5	2 76		40 II 24 h	EC30	mortality	9.10	2 2 6 4 6 9 7 6	[109]
Daudya macrops	first instar	<u>y</u>		5)		7691	20	4.0	5.20	1 1 5	24 II 24 h		mortality	10000 50000	2 3,04,00,70	[110]
Daphnia magna	first instar	n	$100_2(100_3)_2 \times 011_20$	rg S	2	nw	7.6-8.1	20	66-73	54-60	1.15	24 II /8 h	1.050	mortality	1000-1000	3 1 44 62	[40]
Daphnia magna			$100_2(100_3)_2 \times 011_20$	rg S			7.0-0.1	20	66-73	54-60	1.15	40 H	1.050	mortality	6300	3 6 17 70	[40]
Daphnia magna		<u>у</u>	$UO_2(INO_3)_2 \times 0II_2O$	rg S	,	F144	7.9-0.0	20	126-140	126-140	1.15	40 H	1.050	mortality	36800	3 6 17 71	[40]
Daphnia magna		y	$10_{2}(10_{3})_{2} \times 01_{2}0$	ra S	,	rw	7 9-8 0	20	188-205	188-205	1 15	48 h	1050	mortality	46900	3 6 17 71	[40]
Daphnia magna	first instar	<u>y</u>	$10_{10}(NO_{3})_{2} \times 6H_{2}O$	ra P	2	nw	7.6-8.1	20	66-73	54-60	1 15	48 h	1050	mortality	860-1440	3 44 62 72	[40]
Daphnia magna	clone C	¥	U02S04	.y N		 am	7.73	20	90.7	62.1	0.48	96 h	1050	mortality	8250	2 3.8.10	[111]
Daphnia magna	clone F	¥	U02S04	 		am	8.07	20	90.7	126	0.41	96 h	1050	mortality	5180	2 3.8.10	[111]
Daphnia magna	clone C	ý V	U02S04	5	5	am	7.73	20	179	62.1	0.48	96 h	LC50	mortality	22400	2 3.8.10	[111]
Daphnia magna	clone F	/	U02S04	5	5	am	8.07	20	179	126	0.41	96 h	LC50	mortality	15300	2 3,8,10	[111]
Daphnia magna	< 24 h	/ v	UO ₂ (NO ₃) ₂ x 6H ₂ O	S	5	am	8	24	249			24 h	LC50	mortality	9700	3 6,17	[92]
Daphnia magna	< 24 h	v	UO ₂ (NO ₃) ₂ x 6H ₂ O	S	5	am	8	24	249			48 h	LC50	mortality	6540	3 6,17	[92]
Daphnia magna		,	UO ₂ Ac ₂ x 2H ₂ O									48 h	EC50	immobility	13000	4*	[112]

Species	Species	۸	Tect	Durity	(Test	Tect	nH	т	Hardnes	Alkalinity	DOC	Evn	Crit	Endpoint	Value	Pi Notes	Pof
Species	properties	~	compound	Funty	type	water	pri		riarunes		DUC	time	Crit.	Lindpoint	value	RI NOLES	Kei
	properties		compound		type	water				CacO ₃		ume					
				[%]				[°C]	[ma/L]	[ma/L]	[ma/L]				[ua 1]/[]		
Daphnia magna	< 24 h	n		[,0]	c			22	[1119/ -]	[119/2]	[119/ -]	19 h	ECEO		12000	2 1	[112]
Daphnia magna	< 24 11		002AC2 X 21120		3			23				40 II			22700	<u> </u>	[04]
Daphnia magna	< 24 h	v			c	am	7	20	254			24 II 18 h	1.050	mortality	300	2 3 10	[94]
Daphnia magna	< 24 h	y V	$100_2(100_3)_2 \times 011_20$		5	am	8	20	254			40 H	1.050	mortality	7800	2 3,10	[114]
Daphnia magna	< 24 11	у	002(1003)2 × 01120		3	am	0	20	234			40 H		mortality	150	2 5,10	[7]
Daphnia pulex	neonates	v			c		51-56	20-21	23-33	<0.1-0.6		48 h	1.050	mortality	220	4 4	[6]
Diaphaposoma excisum		<u>y</u>	UO_SO.		5	DW/	6.6	20-21	4.6	3 26		24 h	1.050	mortality	1000	2 3 64 68 73 77	[110]
Hyalella azteca	7-14 d	<u>y</u>		00	5	11VV	80-82	23	112-127	94-100		06 h	1.050	mortality	8200	2 3,04,00,73,77	[115]
l atononsis fasciculata	<pre>/ 14 0 </pre>	y V	UO2(1103)2 × 01120	"	5	nw/	6.6	25	4.6	3 26		24 h	1.050	mortality	410	2 3 10 64 68 73 78	[110]
Macrobrachium sp	adult	y n	002004		5	nw	7	25	10	5.20		96 h	1.050	mortality	> 5000	2 11 79	[00]
Moinodanhnia macleavi		v	110-50		5	nw	6.6	25	4.6	3.26		24 h	1.050	mortality	1290	2 3 10 64 68 73 79	[110]
Moinodaphnia macleavi	< 6h	y V	UO2504		<u>р</u>	nw	5.9-6.3	27	4.0	5.20		48 h	1.050	mortality	1230	3 63 80 81	[116]
Moinodaphnia macleavi	< 6h lab cultured strain	<u>y</u>	UO2504 x 3H20		S	nw	6.6-6.9	27	4-6			40 H	1.050	mortality	160	3 5	[117]
Moinodaphnia macleavi		y V			5	1100	6660	27	4-0			40 H	LCEO	mortality	240	2 5	[117]
Moinodaphnia macleavi	< 6h wild strain PR	<u>y</u>			5	TIW DW	6660	27	4-0			40 II 40 h		mortality	240	2 5	[117]
Moinodaphnia macleavi	< 6h wild strain BB	<u>y</u>			5	TIW DW	6660	27	4-0			40 II 40 h		mortality	300	2 5	[117]
Moinodaphnia macleavi	< 6h wild strain DiP	<u>y</u>			5	TIW DW	6660	27	4-0			40 II 40 h		mortality	200	2 5 9 7	[117]
Moinodaphnia madaavi	< 6h, wild strain DjB	<u>y</u>	$10_{2}SO_{4} \times 3\Pi_{2}O$		5	nw	6.6.6.0	27	4-0			40 II 40 h	LCEO	mortality	390	3 5,62	[117]
Moinodaphnia macleavi	< 6h wild strain DjB	<u>y</u>			5	TIW DW	6660	27	4-0			40 II 40 h		mortality	210	<u> </u>	[117]
Moinodaphnia macleavi		<u>y</u>	002304 X 31120		5	n	6.5	27	4-0			40 II 40 h		mortality	105	3 3,03	[00]
Momodaprima macieayi		У			ĸ	11	0.5	27	4			40 11	LCJU	mortality	165	4 04	[99]
Insecta																	
Chironomus dilutus	8 d	v		90	S	tw	8 0-8 2	23	112-127	84-100		96 h	1.050	mortality	33500	2 3 10	[115]
Chironomus tentans	Janvae	<u>y</u>	$1002(1003)2 \times 01120$	33 ra	5	014/	7.6-8.1	20	66-73	54-100	1 1 5	48 h	1.050	mortality	> 40000	3 1 44 62	[40]
Chironomus tentans		<u>n</u>	$100_2(100_3)_2 \times 011_20$	rg	5	1100	7.6-8.1	20	66-73	54-60	1.15	96 h	1.050	mortality	10000-50000	3 1 44 62	[40]
Chironomus riparius			002(1003)2 × 01120	iy	5	300	7.0-0.1	20	00-75	J4-00	1.15	90 H	1.050	mortality	17700	A 1,44,02	[40]
Chironomus crassiforcens	4 days old	v			c	dw	4	27				72 h	1.050	mortality	58000	3 6 88	[118]
Chironomus crassiforceps	4 days old	<u>y</u>			5	dw	6	27				72 h	1.050	mortality	36000	3 6 88	[110]
Chilonomus crassitorceps	4 days old	У			5	uw	0	27				7211	LCJU	mortality	30000	5 0,88	[110]
Pisces																	
Ambassus macleavi	juvenile, 8.1 mm, 315 mg	v	U02S04		R	nw	6.6	27	4.6	3.26		24 h	1.050	mortality	2230	2 3.10.64.68.73	[110]
Ambassus macleavi	juvenile, 8,1 mm, 315 mg	v	U02S04		R	nw	6.6	27	4.6	3.26		48 h	1.050	mortality	800	2 3.10.64.68.73	[110]
Ambassus macleavi	juvenile 8.1 mm 315 mg	v	U02504		R	nw	6.6	27	4.6	3.26		72 h	1050	mortality	800	2 3 10 64 68 73	[110]
Ambassus macleavi	juvenile, 8,1 mm, 315 mg	v	U02S04		R	nw	6.6	27	4.6	3.26		96 h	1.050	mortality	800	2 3.10.64.68.73.89	[110]
Amniataba percoides	adult	n	002004		S	nw	7	25	10	5120		96 h	1.050	mortality	2500	4 4	[99]
Danio rerio	addie	n			0		,	20	10			96 h	1.050	mortality	3020	4* 1.90.91	[101]
Danio rerio		n	$UO_2AC_2 \times 2H_2O$		S	dtw	7.86	20	178			96 h	1.050	mortality	3050	3 1	[78]
Danio rerio			002/102 / 21120		0	atti	/100		1/0			24 h	1050	moreancy	6400	4	[94]
Catostomus latininnis	larvae12-13 d post hatch 20 mg 16 mm	n	$IIO_{2}(NO_{2})_{2}$		S	rw	7 93		144	103		96 h	1050	mortality	43500	3 1 92 93	[119]
Craterocenhalus marianae	juvenile 18.6 mm 386 mg	v	110-504		R	nw	6.6	27	4.6	3 26		24 h	1050	mortality	1860	2 3 10 64 68 73	[110]
Craterocephalus marianae	juvenile 18.6 mm 386 mg	v	U02504		R	nw	6.6	27	4.6	3.26		48 h	1050	mortality	1810	2 3 10 64 68 73	[110]
Craterocephalus marianae	juvenile 18.6 mm 386 mg	y V	U02504		R	nw	6.6	27	4.6	3.26		72 h	1.050	mortality	1220	2 3 10 64 68 73	[110]
Craterocephalus marianae	juvenile 18.6 mm 386 mg	y V	U02504		R	nw	6.6	27	4.6	3.26		96 h	1.050	mortality	1220	2 3 10 64 68 73 94	[110]
Craterocephalus marioriae	adult	n	002004		S	nw	7	25	10	5.20		96 h	1050	mortality	4250	4 4 1 1	[99]
Gambusia holbrooki	dddit		$IIO_{2}(NO_{2})_{2}$		5		,	23	10			96 h	1050	mortality	4000	4 95	[120]
Gila elegans	fry 11-18 days old	n	$UO_2(NO_3)_2$			am	7 0-8 5		196	107		96 h	1.050	mortality	46000	3 1 96	[120]
Gila elegans	iuv 1 1g 138-145 days old	n	$UO_2(NO_3)_2$			am	7.0-0.5		190	107		90 H	1.050	mortality	46000	3 1 96	[121]
Gila elegans	juy 2.6g 220-234days old	<u>n</u>	$UO_2(NO_3)_2$			am	7 0-0.5		196	107		96 h	1050	mortality	46000	3 1 96	[121]
Hypseleotris compressus	adult	<u>n</u>	002(1103)2		S	nw	6	25	8	107	11	96 h	1050	mortality	6596	<u> </u>	[121]
Lenomis macrochirus	auuit	11			э	TIVV	U	25	J		11	90 II	1.025	mortality	1400	<u>+</u> +,11 A A	[7]
	2.7 a: 5.61 cm	v				DW/	51-56	10	25-32	< 0.1-2.9	2 5 0 8 7	90 II	1.050	mortality	1460	4 4 85	[6]
Andiannia unicolor	z., y, J.UI UII	<u>y</u>	$00_2(100_3)_2 \times 0H_20$		c	11W	7	72	10	< 0.1-3.8	5 3.9-0./	90 II		mortality	4006	<u>+ +,0J</u>	[0]
Malanataonia enlandida increta					5	nw	/	20	10	2.2	EO	90 II	LCEO	mortality	1200	<u>+ +,11</u> 2 2 0 7 0 9	[99]
Melanotaonia colondida increta	14 uays, 0.0 y 11511/1 21 days, 0.26 a fich/l	y V	$U(SO_4)_2 \times 4\Pi_2 U$		г с	nw	6.2	20		3.2	J.0 1 E	7 4	LC50	mortality	1570	2 3,37,30	[122]
Melanotaonia arte dide inc.	2 days, 0.30 y 11511/1	y			Г	11W	0.3	30	16	1.0	1.5	7 u	LCSU	montality	1370	2 3,97,99,100	[110]
meianotaenia spiendida inorata	7 days, 7.37 mm, 0.96 mg	У	$00_{2}S0_{4}$		К	nw	0.0	27	4.6	3.26		24 N	LC50	mortality	3240	2 3,10,64,68,73	1110

Species	Species	А	Test Pu	rity Test	Test	pН	Т	Hardnes	Alkalinity	DOC	Exp.	Crit.	Endpoint	Value	Ri Notes	Ref
	properties		compound	type	water			S	CaCO ₃		time					
			50				[00]	CaCO ₃	F (1.3	F (1)				5 11/17		
	2 2 2 2 2 4 4		[%	0]			["]	[mg/L]	[mg/L]	[mg/L]				[µg U/L]	0 0 10 61 60 70	54403
Melanotaenia splendida inorata	7 days, 7.37 mm, 0.96 mg	У	UO_2SO_4	R	nw	6.6	27	4.6	3.26		48 h	LC50	mortality	2750	2 3,10,64,68,73	[110]
Melanotaenia spiendida inorata	7 days, 7.37 mm, 0.96 mg	y	$10_2 SO_4$	<u> </u>	nw	6.6	27	4.6	3.20		72 N	LC50	mortality	2660	2 3,10,64,68,73	[110]
Melanotaenia spiendida inorata	7 uays, 7.37 mm, 0.96 mg	<u> </u>	UO ₂ SO ₄	R	nw	6.6	27	4.0	3.20		90 II 24 h	LCSU	mortality	2000	2 3,10,64,68,73,103	[110]
Melanotaenia spiendida inorata	90 days, 23.7 mm, 415 mg	<u>у</u>			11W	6.6	27	4.0	3.20		24 II 49 h	LCEO	mortality	2940	2 3,10,04,08,73	[110]
Melanotaenia spiendida inorata	90 days, 23.7 mm, 415 mg	y	UO2304	D	DW DW	6.6	27	4.0	3.20		72 h	1.050	mortality	3460	2 3,10,04,08,73	[110]
Melanotaenia splendida inorata	90 days, 23.7 mm, 415 mg	y y	UO2504	R	nw	6.6	27	4.6	3.20		96 h	1.050	mortality	3460	2 3 10 64 68 73 94	[110]
Melanotaenia splendida inorata	adult	, y	002004	S	nw	6	25	8	5.20	11	96 h	1.050	mortality	6000	4 4.11	[99]
Melanotaenia nigrans	7 days, 7.6 mm, 0.91 mg	v	UO2SO4	R	nw	6.6	27	4.6	3.26		24 h	LC50	mortality	2640	2 3.10.64.68.73	[110]
Melanotaenia nigrans	7 days, 7.6 mm, 0.91 mg	Ý	U0 ₂ SO ₄	R	nw	6.6	27	4.6	3.26		48 h	LC50	mortality	2110	2 3.10.64.68.73	[110]
Melanotaenia nigrans	7 days, 7.6 mm, 0.91 mg	ý	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		72 h	LC50	mortality	1880	2 3,10,64,68,73	[110]
Melanotaenia nigrans	7 days, 7.6 mm, 0.91 mg	ý	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		96 h	LC50	mortality	1700	2 3,10,64,68,73,101	[110]
Melanotaenia nigrans	90 days, 22.1 mm, 304 mg	ý	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		24 h	LC50	mortality	3240	2 3,10,64,68,73	[110]
Melanotaenia nigrans	90 days, 22.1 mm, 304 mg	У	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		48 h	LC50	mortality	2370	2 3,10,64,68,73	[110]
Melanotaenia nigrans	90 days, 22.1 mm, 304 mg	У	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		72 h	LC50	mortality	1970	2 3,10,64,68,73	[110]
Melanotaenia nigrans	90 days, 22.1 mm, 304 mg	У	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		96 h	LC50	mortality	1900	2 3,10,64,68,73,102	[110]
Melanotaenia nigrans	adult	n		S	nw	6	25	8		11	96 h	LC50	mortality	4500	4 4,11	[99]
Mogurnda mogurnda	sac-fry (1 d)	У		R	am	6	27	3.9	3.26	< 0.2	96 h	EC50	mortality	1377	2 3,10,11	[99]
Mogurnda mogurnda	7days, 4.73mm, 0.94mg	У	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		24 h	LC50	mortality	2470	2 3,10,64,68,73	[110]
Mogurnda mogurnda	7days, 4.73mm, 0.94mg	У	UO ₂ SO ₄	R	nw	6.6	27	4.6	3.26		48 h	LC50	mortality	2050	2 3,10,64,68,73	[110]
Mogurnda mogurnda	/days, 4./3mm, 0.94mg	У	UO ₂ SO ₄	R	nw	6.6	2/	4.6	3.26		/2 h	LC50	mortality	1110	2 3,10,64,68,73	[110]
Mogurnda mogurnda	7days, 4.73mm, 0.94mg	У	U0 ₂ S0 ₄	<u> </u>	nw	6.6	27	4.6	3.26		96 h	LC50	mortality	1110	2 3,10,64,68,73,104	[110]
Mogurnda mogurnda	90days, 26.4mm, 138.2mg	<u> </u>		R	nw	6.6	27	4.6	3.26		24 h	LC50	mortality	2930	2 3,10,64,68,73	[110]
Mogurnda mogurnda	90days, 26.4mm, 138.2mg	y		R	nw	6.6	27	4.6	3.20		48 N	LC50	mortality	2150	2 3,10,64,68,73	[110]
Mogurnda mogurnda	90days, 20.4mm, 138.2mg	y	UO ₂ SO ₄	D	DW DW	6.6	27	4.0	3.20		06 h	1.050	mortality	1400	2 3,10,04,08,73	[110]
Mogurnda mogurnda	6 days, 0.8 g fish/l	y y	$100_{2}30_{4}$	F	nw	6.56	30	4.0	3.20	5.8	96 h	1.050	mortality	1570	2 3 97 98 107	[122]
Mogurnda mogurnda	40 days 0.8 g fish/l	y y	$U(SO_4)_2 \times 4H_2O$	F	nw	6 56	30	4	3.2	5.8	96 h	1050	mortality	3290	2 3 97 98 107	[122]
Mogurnda mogurnda	40 days, 0.8 g fish/l	y	$U(SO_4)_2 \times 4H_2O$	F	nw	6.56	30	4	3.2	5.8	7 d	1.050	mortality	2690	2 3,97,98, 107	[122]
Mogurnda mogurnda	40 days, 0.8 g fish/l	, v	$U(SO_4)_2 \times 4H_2O$	F	nw	6.56	30	4	3.2	5.8	7 d	LC50	mortality	1440	2 3.74.97.98.107	[122]
Mogurnda mogurnda	70 days, 0.8 g fish/l	ý	$U(SO_4)_2 \times 4H_2O$	F	nw	6.56	30	4	3.2	5.8	96 h	LC50	mortality	3290	2 3.97.98, 107	[122]
Mogurnda mogurnda	70 days, 0.8 g fish/l	ý	U(SO ₄) ₂ x 4H ₂ O	F	nw	6.56	30	4	3.2	5.8	7 d	LC50	mortality	3290	2 3,97,98, 107	[122]
Mogurnda mogurnda	70 days, 0.8 g fish/l	ý	U(SO ₄) ₂ x 4H ₂ O	F	nw	6.56	30	4	3.2	5.8	7 d	LC50	mortality	2700	2 3,74,97,98,107	[122]
Mogurnda mogurnda	recently hatched fry	ý	UO2SO4 x 3H2O	R	am	6	27	6.6	4		96 h	LC50	mortality	1730	2 3,7,9	[123]
Mogurnda mogurnda	recently hatched fry	У	UO ₂ SO ₄ x 3H ₂ O	R	am	6	27	6.6	4		96 h	LC50	mortality	1965	2 3,7,9	[123]
Mogurnda mogurnda	recently hatched fry	У	UO ₂ SO ₄ x 3H ₂ O	R	am	6	27	165	4		96 h	LC50	mortality	1335	2 3,7,9	[123]
Mogurnda mogurnda	recently hatched fry	У	UO ₂ SO ₄ x 3H ₂ O	R	am	6	27	165	4		96 h	LC50	mortality	1710	2 3,7,9	[123]
Mogurnda mogurnda	recently hatched fry	У	UO2SO4 x 3H2O	R	am	6	27	330	4		96 h	LC50	mortality	1270	2 3,7,9	[123]
Mogurnda mogurnda	recently hatched fry	У	UO2SO4 x 3H2O	R	am	6	27	330	4		96 h	LC50	mortality	1770	2 3,7,9	[123]
Oncorhynchus mykiss											96 h	LC50	mortality	6200	4 4	[7]
Oncorhynchus mykiss	130 mm; 27.8 g	У		F		6.8-7.0	14.2	30.8	26		96 h	LC50	mortality	6200	4 4,6,75	[6]
Oncorhynchus mykiss	0.58 g	У	$UO_2(NO_3)_2 \times 6H_2O$	S		6.2-7.0	15-16	20	11-12		96 h	LC50	mortality	4200	4 3,4	[6]
Oncorhynchus mykiss	0.58 g	У	$UO_2(NO_3)_2 \times 6H_2O$	5		6.2-7.0	15-16	68	11-12		96 h	LC50	mortality	3900	4 3,4	[6]
Oncornynchus mykiss	0.58 g	<u> </u>	$UO_2(NO_3)_2 \times 6H_2O$	5		6.2-7.0	15-16	126	11-12		96 h	LC50	mortality	4000	4 3,4	[6]
Dincornynchus mykiss	0.50 y	<u>y</u>	$UO_2(INO_3)_2 \times 6H_2O_2$	5	2014	7691	20	243	<u> </u>	1 1 5	90 II 40 h	LCSU	mortality	> 100000	4 3,4	[0]
Pimephales prometas		n	$100_2(100_3)_2 \times 011_20$ rg	5	11W	7.0-0.1	20	66 72	54-00	1.15	40 II	LCEO	mortality	> 100000	3 1,44,02	[40]
Pimenhales promelas		n II	$\frac{1002(1003)2 \times 01120}{1102504 \times 3H_{2}0}$	э	1100	7.0-0.1	20	20	18	1.13	96 h	1050	mortality	2800	3 1	[124]
Pimenhales prometas		n	U02504 x 3H20			8.2		400	360		96 h	1050	mortality	135000	3 1	[124]
Pimenhales promelas		n	$UO_2(NO_2)_2 \times 6H_2O$			7.4		20	18		96 h	1.050	mortality	3100	3 1	[124]
Pimephales promelas		n	$UO_2Ac_2 \times 2 H_2O$			7.4		20	18		96 h	LC50	mortality	3700	3 1	[124]
Pimephales promelas	< 24 h	v	UO ₂ (NO ₃) ₂ x 6H ₂ O	R		6.3-7.0	24-26	23			96 h	LC50	mortality	2000	4 3,4	[6]
Pimephales promelas	< 24 h	ý	UO ₂ (NO ₃) ₂ x 6H ₂ O	R		6.3-7.0	24-26	72			96 h	LC50	mortality	2000	4 3,4	[6]
Pimephales promelas	< 24 h	ý	UO2(NO3)2 x 6H2O	R		6.3-7.0	24-26	131			96 h	LC50	mortality	2100	4 3,4	[6]
Pimephales promelas	< 24 h	ý	UO ₂ (NO ₃) ₂ x 6H ₂ O	R		6.3-7.0	24-26	244			96 h	LC50	mortality	1800	4 3,4	[6]

Species	Species	A Test	Purity	Test [·]	Test	pН	Т	Hardnes	Alkalinity	DOC	Exp.	Crit.	Endpoint	Value	Ri	Notes	Ref
	properties	compound		type 🛛	water			S	CaCO₃		time						
								CaCO ₃									
			[%]				[°C]	[mg/L]	[mg/L]	[mg/L]				[µg U/L]			
Pseudomugli tenellus	juvenile, 8.1 mm, 315 mg	y UO ₂ SO ₄		R I	nw	6.6	27	4.6	3.26		24 h	LC50	mortality	2070	2	3,10,64,68,73	[110]
Pseudomugli tenellus	juvenile, 8.1 mm, 315 mg	y UO ₂ SO ₄		R I	nw	6.6	27	4.6	3.26		48 h	LC50	mortality	820	2	3,10,64,68,73	[110]
Pseudomugli tenellus	juvenile, 8.1 mm, 315 mg	y UO ₂ SO ₄		R I	nw	6.6	27	4.6	3.26		72 h	LC50	mortality	730	2	3,10,64,68,73	[110]
Pseudomugli tenellus	juvenile, 8.1 mm, 315 mg	y UO ₂ SO ₄		R I	nw	6.6	27	4.6	3.26		96 h	LC50	mortality	730	2	3,10,64,68,73,106	[110]
Ptychocheilus lucius	fry 17-31 days old	n UO ₂ (NO ₃) ₂		S i	am	7.0-8.5		196	107		96 h	LC50	mortality	46000	3	1,96	[121]
Ptychocheilus lucius	juv., 0.4-1.1g, 99-115days	n UO ₂ (NO ₃) ₂		S a	am	7.0-8.5		196	107		96 h	LC50	mortality	46000	3	1,96	[121]
Ptychocheilus lucius	juv., 1.7g, 193-207 days	n UO ₂ (NO ₃) ₂		S i	am	7.0-8.5		196	107		96 h	LC50	mortality	46000	3	1,96	[121]
Salvenius fontinalis	juvenile	y UO ₂ SO ₄ x 3H ₂ O		R I	nw+ dw	6.7	13	32	12		96 h	LC50		5500	2	7,9	[27]
Salvenius fontinalis	juvenile	y UO ₂ SO ₄ x 3H ₂ O		R I	nw+ dw	7.5	14	210	54		96 h	LC50		23000	2	7,9,107	[27]
Salvenius fontinalis	juvenile, 0.6 g, 44 mm	y UO ₂ SO ₄ x 3H ₂ O		Fι	nw+ dw	7.4	16	184	146		48 h	LC50		59000	2	7,69,107	[27]
Salvenius fontinalis											96 h	LC50	mortality	6200	4	4	[7]
Salvenius fontinalis	81 mm, 7.8 g	ý		F		6.8-7.0	14.2	30.8	26		96 h	LC50	mortality	8000	4	4,6	[6]
Xyrauchen texanus	fry 10-17 days old	n UO ₂ (NO ₃) ₂		i	am	7.0-8.5		196	107		96 h	LC50	mortality	46000	3	96	[121]
Xyrauchen texanus	juv., 0.9g, 133-139 days old	n UO ₂ (NO ₃) ₂			am	7.0-8.5		196	107		96 h	LC50	mortality	46000	3	96	[121]
Xyrauchen texanus	juv., 2.0g, 176-186 days old	$1 UO_2(NO_3)_2$			am	7.0-8.5		196	107		96 h	LC50	mortality	46000	3	96	[121]

37

Notes

- 1 Not analysed
- 2 Endpoint based on nominal concentrations
- 3 Endpoint based on mean measured concentrations
- 4 Original reference not available
- 5 Analysis only performed at the start of the experiment
- 6 Unclear if endpoint based on measured or nominal concentrations
- 7 Measured concentrations within 20% of nominal
- 8 Measured concentrations within 10% of nominal
- 9 Renewal every 24 h
- 10 Analysis performed at the start and end of the test
- 11 Recalculated from concentration in UO₂
- 12 Not a pure culture
- 13 Endpoint extrapolated
- 14 Acetate as substrate
- 15 H2 as substrate
- 16 Sulphur (S0) as substrate
- 17 Result of analysis unknown
- 18 Effect on growth was mainly caused by increased lag times, at maximum growth for the control (24 h) there was almost no growth at the treatments. Maximum growth for lowest exposure was reached after 48 hours, finally all treatments reached the same optical density.
- 19 Growth substrate butyrate
- 20 Growth substrate dextrose
- 21 Growth substrate lactate
- 22 Growth substrate ethanol
- 23 Exponential phase of control ± 16 h
- Exponential phase of control \pm 10 h
- 25 Exponential phase of control \pm 18 h
- 26 Increased level of sodium bicarbonate (10 mM), tested with multiple carbon sources
- 27 Recalculated for exponential phase with data from graph in paper
- 28 Highest test concentration exceeds maximum water solubility not included in estimation of endpoint

- 29 Endpoint determined with data from graph in paper
- 30 Lowest exposure concentration 1 mg/L
- 31 Exposure time much longer than exponential phase of the control
- 32 Measured concentrations at the start of the experiment within 20% of nominal concentrations, endpoint based on initial measured concentrations; analysis performed at the end of the experiment showed a mass balance in each treatment of >90%, 75% in solution, 10% bound to the cell surface and ca. 15% adsorbed to the walls of the flasks, this recovery is considered high enough to assign Ri2
- 33 Endpoint based on measured concentrations, analysis only performed at the start of the experiment, mass balance at similar exposure showed only 50-70% in solution after 72 h and up to 40% of the U added adsorbed to the walls of the flasks throughout this similar test. Therefore endpoints based on initial measured concentrations considered Ri3;
- 34 Endpoint based on measured concentrations; analysis only performed at the start of the experiment, contact with the author revealed that the same apparatus was used as in Hogan et al. [96] where loss in concentration over 96 h was less than 20% therefore considered acceptable
- 35 Growth inhibition at highest concentration was 17%, original uranium concentration in test water 0.7 µg/L
- 36 Performed in low nutrient medium based on a 1.5% dilution of a high nutrient medium
 - Performed in low nutrient medium based on a 0.5% dilution of a high nutrient medium
- 38 Performed in low nutrient medium containing 333 uM glucose
- 39 Performed in low nutrient medium based on aspartic acid (150 uM)
- 40 Measured concentrations within 20% of nominal concentrations, endpoint based on measured concentrations after renewal only, same method used as and same research group as Hogan et al. [91] for which contact with the author revealed that the same apparatus was used as in Hogan et al. [96] where loss in concentration over 96 h was less than 20% therefore considered acceptable; renewal every 48 hours

- 41 Range finding test not analysed, a separate fate test for the higher test concentrations showed a reduction of 11 to 16% of the uranium concentration over 96 h therefore nominal concentrations considered acceptable as total, U background concentration in test water 0.016-1.67 µg/L; reported pH range is in the U treatments over the exposure period
- 42 Endpoint based on pooled data of three tests based on measured values, analysis only performed at start of the test but a separate fate test for the higher test concentrations showed a reduction of 11 to 16% of the uranium concentration over 96 h therefore nominal concentrations considered acceptable as total, U background concentration in test water 0.016-1.67 µg/L; reported pH is at start of experiment, an increase of the actual pH of test solutions of 1.1 unit from starting pH was reported since this indicated a pH rise above 7, this endpoint is considered unreliable.
- 43 Renewal 20% of medium every 2 days
- 44 Unreliable fit
- 45 Phosphate concentration 0.01 mg/L
- 46 Phosphate concentration 0.14 mg/L
- 47 Phosphate concentration 1.36 mg/L
- 48 Phosphate concentration 4.0 mg/L
- 49 Phosphate concentration 8.0 mg/L
- 50 Same test protocol as performed by Markich and Camileri [99]
- 51 Effect determined 24 h after exposure
- 52 Same study as Labrot et al. [78]
- 53 EC50 based on bivalve closure time during the total exposure time of 300 min
- 54 Exposure in PVC tanks
- 55 Only one concentration tested
- 56 Analysis result of filtered and unfiltered samples were similar
- 57 Exposure in tanks with sand
- 58 Continuous feeding
- 59 Control phase of 48 h followed by an exposure phase of 48 h (same animals)
- 60 Fulvic acid added to test medium
- 61 Citation of unpublished data of the author, enough details are given to assess reliability
- 62 Endpoint determined with data from paper
- 63 Endpoint corrected for measured concentrations
- 64 Measured concentrations < 80% of nominal
- 65 Animals fed during test
- 66 Nominal concentrations based on measured stock solution
- 67 Animals exposed to extract from soil containing more metals
- 68 Natural uranium concentration in test water was 0.2 μg/L
- 69 Comparison of filtered versus unfiltered samples showed that >93% of the uranium was in the dissolved form
- 70 Geometric mean of three tests
- 71 Geometric mean of two tests
- 72 Determined after 48 hours in chronic experiment, a second test gave no mortalities at all after 48 h

- 73 Alkalinity 3.26
- 74 Endpoint determined after post exposure period of 7 days
- 75 No partial mortalities
- 76 LC1 = 0.14 mg/L
- 77 LC1 = 0.9 mg/L
- 78 LC1 = 0.17 mg/L
- 79 LC1 = 0.49 mg/L
- 80 Fed with vitamin enriched fermented food and algae
- 81 Analysis only performed in stock solution added to test water
- 82 Strain pre-cultured in contaminated water
- 83 Animals were unhealthy during test
- 84 Citation of unpublished data
- 85 Concentration before filtration was 1670 µg/L
- 86 Natural water was well water
- 87 Not a population relevant endpoint
- 88 Water spiked water-sediment system consisting of ashed natural sand
- 89 LC1 = 0.073 mg/L
- 90 According to OECD guideline
- 91 Limited details reported
- 92 According to ASTM method
- 93 Confidence interval 34.8 53.4 mg/L
- 94 LC1 = 0.26 mg/L
- 95 Results from range-finding test in previous study (not reported)
- 96 No partial mortality observed, endpoint calculated as geometric mean of lowest conc. with 100% mortality and highest concentration with 0% mortality
- 97 Animals exposed in separate compartment of larger tank
- 98 TOC 9.2 mg/l,
- 99 Unclear whether samples for uranium analysis taken from dilution medium of from the exposure tanks
- 100 TOC 2.7 mg/l
- 101 LC1 = 0.37 mg/L
- 102 LC1 = 0.92 mg/L
- 103 LC1 = 0.88 mg/L
- 104 LC1 = 0.158 mg/L
- 105 LC1 = 0.23 mg/L
- 106 LC1 = 0.071 mg/L
- 107 Analysis performed daily

Table A3.2 Chronic toxicity for freshwater organisms

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Species	Species	A Test	Purity	Test	Test	nН	Т	Hardnes	s Alkalinit	V DOC	Exn.	C	rit.	Endpoint	Value	Ri	Notes	Ref
Image: Marking Image:	opecies	properties	compound	i unicy	type	water	p.,		CaCO ₃	CaCO ₃	., 200	time			Lindpolite	value			
Sector Product sector		F .F		[%]	-71			[°C]	[mg/L]	[mg/L]	[mg/L	.]				[µg U/L]			
Bacteria y U/C/L × 11/L ×09 6 am 7.5 0 For the second																			
antendes aduging v U_C V_L	Bacteria																		
and another budged v 00,0,5, v 2H0,0 >290 3 and 7.5 30 2.4 C10 ntice the reduction. 1000 3 12.13 184 Escherholt of n 00,0,5, v 2H0 S an 7.5 20 48 NOEC approximation. 1700-200 3 1.13 113 Escherholt of n 00,0,0, v 2H0 S an 7.5 20 48 NOEC approximation. 2.700 3 1.41 113 Interaction of the interaction of the interaction of the interaction of the interaction. n 00,0,0,0, v 3 2.7 204 44 44 NOEC approximation. 2.70 3 1.4 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.12 120 3 1.1	anaerobic sludge		y UO ₂ Cl ₂ x 3H ₂ O	>99	S	am	7.5	30				6 d	E	C10	nitrate reduction	7100	3	12,14	[84]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	anaerobic sludge		y UO ₂ Cl ₂ x 3H ₂ O	>99	S	am	7.5	30				2 d	E	C10	nitrate reduction	16000	3	12,15	[84]
Description descrip	anaerobic sludge		y UO ₂ Cl ₂ x 3H ₂ O	>99	S	am	7.5	30				13 d	E	C10	nitrate reduction	12000	3	12,16	[84]
$ \begin{array}{c} \mbox dom a constraint of a log (27, 27, 27, 27, 27, 27, 27, 27, 27, 27, $	Desulfovibrio desulfuricans	strain G20	y UO ₂ Cl ₂ x 3H ₂ O		S	am		25				25 d	N	IOEC	growth	2618	2	35	[125]
minded durfter, during the start of the start o	Escherichia coli		n UO ₂ Ac ₂ x 2H ₂ O		5	am	7.5	27	204			48 h	N	IOEC	acid formation	1/00-220	03	1	[113]
	mixed culture	thiosulfate adapted	y UO ₂ Cl ₂ x 3H ₂ O	>99	5	am	7.5	30				14 d	E	C10	methane prod.	2600	3	12,14	[84]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pseudomonas aeruginosa		y UO ₂ (NO ₃) ₂ x 6H ₂ O		5	am	/.4		40			24 h	N	IOEC/EC10) growth	< 10000	3	2,17,18	[85]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Pseudomonas fluorescens		n HOA DHO		5	am	6	25	3.4			24 h	N	IOEC	growth	< 270	3	1,36	[126]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pseudomonas fluorescens		n UO ₂ AC ₂ x 2H ₂ O		5		7.5-7.8	25	204			24 n	N	IDEC	growth	1120	3	1 10	[12/]
regularization n Uo,Ci, S am 7 20 7 21 No.Lec growth rate 2 1.43 [Bit] Resultationants sp. n Uo,Ci, S am 7 20 7 46 h No.Lec growth rate 27 3 1.22 Bit Resultationants sp. n Uo,Ci, S am 7 20 7 28 h C1.0 growth rate 21.400 3 1.19,73,27 Bit	Pseudomonas sp.				5	am	/	20	/			28 h	N	IDEC	growth rate	< 13500	3	1,19	[86]
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Pseudomonas sp.				5	am	/	20	/			24 n	N	IDEC	growth rate	< 13500	3	1,20	[86]
$ \begin{array}{c} \text{regularizations} \ g_{2} & 1 & 00 \\ \text{regularizations} \ g_{$	Pseudomonas sp.				5	am	/	20	/			22 h	IN N	IDEC	growth rate	< 13500	3	1,21	[86]
Preduction is given in the constraint of th	Pseudomonas sp.				5	am	7	20	/			46 h			growth rate	2/	3	1,22	[86]
$ \begin{array}{c} reaccomparises generations generat$	Pseudomonas sp.				5	am	7	20	/			28 1		C10	growth rate	21400	3	1,19,23,27	[86]
Cardio Data Sp. n DUCL S am 7 20 7 20 7 20 7 20 8 1 1 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 10 7 10 7 10 7 10 7 20 80 7 20 80 7 20 7 10 7 10 7 20 80 7 20 80 7 20 80 7 20 80 7 20 80 7 20 80 7 20 80 7 20 80 7 20 80 7 20 80 7 20 80 7 20 20 20 20 20 20 20 20 20 20 20 20	Pseudomonas sp.				5	am	/	20	/			24 h		C10	growth rate	22300	3	1,20,23,27	[86]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pseudomonas sp.				5	am	/	20	/			22 h	E	C10	growth rate	9000	3	1,21,24,27	[86]
Inducation for the data is for the data in the	Pseudomonas sp.				5	am	/	20	105			46 h	E	C10	growth rate	12.7	3	1,22,25,27	[86]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Thisbacillus ferrooxidans		n UO ₂ SO ₄ x 3H ₂ O		5	am	1.3	28	165			48 n		C10	oxidation	50000	3	1 20 20	[87]
Catagonal participation In UD2 (100,1) x 0 in UD S ann 6-7 24 61 24 n EL10 provem rate 0.02 (0.3) x 0 in UD S ann 6-7 24 81 66 h DECE approvem rate 21.00 3 1.31 (88) Coopleas ramigera n UD2 (NO.) x 0 in UD S ann 6-7 24 81 66 h DECE approvem rate 21.00 3 1.31 (88) Coopleas ramigera n UD2 (NO.) x 0 in UD S ann 6-7 24 81 66 h DECE approvem rate 21.00 3 1.1 (129) Agaze			$h UU_2SU_4 \times 3H_2U$		5	am	1.8-2.2	30	01			80 min		C10	oxygen consump.	1/40000	3	1,28,29	[128]
Adduced latingeral In Uo.(No), 2 KH, 0 S ain 67 24 61 NOEC ind unit C.100 S 1, 51 (86) Cyanobateria Fischereila muscicula n UO.(No), 2 KH, 0 S am 67 24 81 66 h ECI0 growth rate 21000 3 1, 31 (89) Charles ps. wild type, 4-5 days y UO.(SQ, x 3H,O S am 7.0 27 80 8.7 < 0.2 7.1 ECI0 growth rate 0.7 2 32 (89) Chorella sp. wild type, 4-5 days y UO.(SQ, x 3H,O S am 7.0 27 40 8.7 < 0.2 7.1 ECI0 growth rate 0.7 2 32 (89) Chorella sp. wild type, 4-5 days y UO.(SQ, x 3H,O S am 7.0 27 400 8.7 < 0.2 7.1 ECI0 growth rate 2.1 2.3 2.2 (89) Chorela	Zoogloea ramigera		$n UO_2(NO_3)_2 \times 6H_2O$		5	am	6-7	24	81			24 N	E		growth rate	0.87	3	1,13,30	[88]
Consider latingeral In Org(MG) ₂ x 6H ₂ O S and 6*7 2.4 6.1 66 n E.C.10 growth rate 2.10 3 1,31 (66) Cyanobacteria Fischerella muscicola n UO ₂ (NO ₂) ₂ x 6H ₂ O S am 2.4 NOEC mortality <11900 3 1 [129] Alge Consolidation NOE mortality <11900 3 1 [129] Chiorella sp. wild type, 4-5 days y UO ₂ SO ₂ x 3H ₂ O S am 7.0 27 8 8.7 < 0.2 72.h EC10 growth rate 0.7 2 32 23 [139] Chiorella sp. wild type, 4-5 days y UO ₂ SO ₂ x 3H ₂ O S am 7.0 7.0 8.7 < 0.2 7.1 EC10 growth rate 4.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	Zoogloeg ramigera				5	am	67	24	01			66 li			ag une	< 1000	2	1,31	[00]
Cyanobacterial rischerella musicola n UO ₂ (NO ₂) ₂ x 6H ₂ O S am 24 NOEC mortality < 11900 3 1 [129] Algae Chiorella sp. wild type, 4-5 days y UO ₂ SO ₄ x 3H ₂ O S am 7.0 27 8 8.7 < 0.2 72 h EC10 growth rate 0.7 2 32 [89] Chiorella sp. wild type, 4-5 days y UO ₂ SO ₄ x 3H ₂ O S am 7.0 27 40 8.7 < 0.2 72 h EC10 growth rate 0.7 2 32 [89] Chiorella sp. wild type, 4-5 days y UO ₂ SO ₄ x 3H ₂ O S am 7.0 7 400 6.7 < 0.2 72 h EC10 growth rate 3.5 4 4 [89] Chiorella sp. y S am 5.7 27 2.4 72 h EC10 growth rate 3.1 3 2.6,33 [90] Chiorella sp. y S am 6.4	2009i0ea rainiyera		$\Pi UU_2(\Pi U_3)_2 \times G\Pi_2 U$		5	dili	0-7	24	01			00 11	E	010	growin rate	2100	3	1,51	[00]
Charled wascical n UO ₂ (NO ₂) ₂ x 6H ₂ O S am 24 NOEC mortality < 119000 3 1 [129] Age Chiorella sp. wild type, 4-5 days y UO ₂ SO ₂ x 3H ₂ O S am 7.0 27 8 8.7 < 0.2 7.2 h EC10 growth rate 0.7 2 3.2 [190] Chiorella sp. wild type, 4-5 days y UO ₂ SO ₂ x 3H ₂ O S am 7.0 27 40 8.7 < 0.2	Cuanabastaria																		
Name No.C.					c	200		24					Ν		mortality	< 110000	2	1	[120]
Alge Null bye, 4-5 days y UO,SO, x 3H,O S am 7.0 27 8 8.7 c.0.2 72.h EC10 growth rate 0.7 2 32 [89] Chiorella sp. wild type, 4-5 days y UO,SO, x 3H,O S am 7.0 27 40 8.7 <0.2					5	ann		24						IOLC	mortality	< 119000	5	1	[129]
Chiorella sp. wild type, 4-5 days y. UO, SO, x. 3H,O S am 7.0 27 8 8.7 < 0.2 72h EC10 growth rate 0.7 2 32 [89] Chiorella sp. wild type, 4-5 days y. UO, SO, x. 3H,O S am 7.0 27 400 8.7 < 0.2 72h EC10 growth rate 0.7 2 32 [89] Chiorella sp. wild type, 4-5 days y. UO, SO, x. 3H,O S am 7.0 27 400 8.7 < 0.2 72h EC10 growth rate 2.3 2 32 [89] Chiorella sp. wild type, 4-5 days y. UO, SO, x. 3H,O S am 7.0 27 400 8.7 < 0.2 72h EC10 growth rate 4.5 32 32 32 [89] Chiorella sp. y. UO, SO, x. 3H,O S am 6.7 2.7 2.4 72h EC10 growth rate 1.1 3 26,33 [90] Chiorella sp. y. UO, SO, x. 3H,O S am 6.5 29	Algae																		
Chiorella sp. wild type, 4-5 days y UO,SQ, x 3H ₂ O S am 7.0 27 40 8.7 < 0.2 7.1 EC10 growth rate 0.7 2 32 [89] Chiorella sp. wild type, 4-5 days y UO,SQ, x 3H ₂ O S am 7.0 27 400 8.7 < 0.2	Chlorella sp.	wild type, 4-5 days	v UO ₂ SO₄ x 3H ₂ O		S	am	7.0	27	8	8.7	< 0.2	72 h	E	C10	growth rate	0.7	2	32	[89]
Chiorella sp. wild type, 4-5 days y U0,S0, x 3H,O s am 7.0 27 100 8.7 < 0.2 72.h EC10 growth rate 2.3 2 2.32 [89] Chiorella sp. wild type, 4-5 days y U0,S0, x 3H,O S am 7.0 8 48 h EC10 growth rate 4.5 2 32 [89] Chiorella sp. 7.0 8 48 h EC10 0.9 4 4 [89] Chiorella sp. 7.0 400 48 h EC10 0.9 4 4 [89] Chiorella sp. y U0,S0, x 3H,O 5 am 6.5 27 2.4 72.h EC10 growth rate 11 3 26,33 [90] Chiorella sp. y S am 6.4-6.6 29 3.9 1.1 4.1 72.h NOEC growth rate 150 2 34 (91] Chiorella sp. y S nw 6.3-66 29 3.9 7.8 7.1 NOEC growth rate 150 2 34 (91]	Chlorella sp.	wild type, 4-5 days	v UO ₂ SO ₄ x 3H ₂ O		S	am	7.0	27	40	8.7	< 0.2	72 h	E	C10	growth rate	0.7	2	32	[89]
Chiorella sp. wild type, 4-5 days y U0_2S0_4 x 3H_2O S am 7.0 27 400 8.7 < 0.2 7.h EC10 growth rate 4.5 2 32 [89] Chiorella sp. 7.0 8 48 h EC10 0.9 4 4 [89] Chiorella sp. 7.0 400 48 h EC10 0.9 4 4 [89] Chiorella sp. y U0_2S0_4 x 3H_2O S am 6.5 27 2-4 72 h EC10 growth rate 11 3 26,33 [90] Chiorella sp. y U0_2S0_4 x 3H_2O S am 6.4 6.2 29 3.6 2.63 - 72 h NOEC growth rate 13 26,33 [90] Chiorella sp. y S nw 6.3 6.4 29 3.9 11 4.1 172 h NOEC growth rate 150 2 34 [91] Chiorella sp. y S nw 6.4 6.6 29 3.9 -5.6 72 h NOEC	Chlorella sp.	wild type, 4-5 days	y U0 ₂ SO ₄ x 3H ₂ O		S	am	7.0	27	100	8.7	< 0.2	72 h	E	C10	growth rate	23	2	32	[89]
Chiorella sp. 7.0 8 48 h EC10 0.9 4 4 [89] Chiorella sp. 7.0 8 48 h EC10 3.5 4 [89] Chiorella sp. 7.0 8 48 h EC10 3.5 4 [89] Chiorella sp. y U0,50, x 3H,0 S am 6.7 27 2.4 72 h EC10 growth rate 21 3 26,33 [90] Chiorella sp. y U0,50, x 3H,0 S am 6.5 27 2.4 72 h EC10 growth rate 11 3 26,33 [90] Chiorella sp. y S am 6.5-6.6 29 3.6 2.63 -72 h NOEC growth rate 150 2 34 [91] Chiorella sp. y S nw 6.3-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 34 [91] Chiorella sp. y S nw 6.3-6.6 29 3.9 7 8.1	Chlorella sp.	wild type, 4-5 days	y U0 ₂ SO ₄ x 3H ₂ O		S	am	7.0	27	400	8.7	< 0.2	72 h	E	C10	growth rate	4.5	2	32	[89]
Chlorella sp. 7.0 400 48 h EC10 3.5 4 (P9) Chlorella sp. y U0_SQ_x X H_2O S am 5.7 2.7 2.4 72 h EC10 growth rate 21 3 26,33 (90) Chlorella sp. y U0_SQ_x X H_2O S am 6.4 6.2 3.6 2.6.3 - 72 h NOEC growth rate 11 3 26,33 (90) Chlorella sp. y S nm 6.4-6.6 29 3.6 2.6.3 - 72 h NOEC growth rate 18 2 3.4 (91) Chlorella sp. y S nw 6.2-6.6 29 3.9 11 4.1 72 h NOEC growth rate 109 2 3.4 (91) Chlorella sp. y S nw 6.2-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 3.4 (91) Chlorella sp. y X N 6.3-6.6 29 3.9 7	Chlorella sp.	<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , ,				7.0		8			48 h	E	C10	5	0.9	4	4	[89]
Chlorella sp. y U0_2S0_4 x 3H_0 S am 5.7 27 2.4 72 h EC10 growth rate 21 3 26,33 [90] Chlorella sp. y U0_2S0_4 x 3H_2O S am 6.5 27 2.4 72 h EC10 growth rate 11 3 26,33 [90] Chlorella sp. y S am 6.5 27 2.4 72 h NOEC growth rate 11 3 26,33 [90] Chlorella sp. y S nm 6.5-6.8 29 3.9 11 4.1 72 h NOEC growth rate 150 2 34 [91] Chlorella sp. y S nw 6.4-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y S nw 6.4-6.6 29 3.9 7 8.1 72 h NOEC growth rate 17 2 34 [91] Chlorella sp. y X R	Chlorella sp.						7.0		400			48 h	E	C10		3.5	4	4	[89]
Chlorella sp. y U0,50, x 3H ₂ O S am 6.5 27 2.4 72 h EC10 growth rate 11 3 26,33 [90] Chlorella sp. y S am 6.4-6.6 29 3.6 2.63 - 72 h NOEC growth rate 11 3 26,33 [90] Chlorella sp. y S nw 6.5-68 29 3.9 11 4.1 72 h NOEC growth rate 150 2 34 [91] Chlorella sp. y S nw 6.2-6.4 29 3.9 3.4 72 h NOEC growth rate 150 2 34 [91] Chlorella sp. y S nw 6.4-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y S nw 6.3-6.6 29 3.9 <5 2.6 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. <th< td=""><td>Chlorella sp.</td><td></td><td>y U0₂S0₄ x 3H₂O</td><td></td><td>S</td><td>am</td><td>5.7</td><td>27</td><td>2-4</td><td></td><td></td><td>72 h</td><td>E</td><td>C10</td><td>growth rate</td><td>21</td><td>3</td><td>26,33</td><td>[90]</td></th<>	Chlorella sp.		y U0₂S0₄ x 3H₂O		S	am	5.7	27	2-4			72 h	E	C10	growth rate	21	3	26,33	[90]
Chlorella sp. y S am 6.4-6.6 29 3.6 2.63 - 72 h NOEC growth rate 38 2 34 [91] Chlorella sp. y S nw 6.5-6.8 29 3.9 11 4.1 72 h NOEC growth rate 150 2 34 [91] Chlorella sp. y S nw 6.2-6.4 29 3.9 11 4.1 72 h NOEC growth rate 150 2 34 [91] Chlorella sp. y S nw 6.3-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y S nw 6.3-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y R 7.1-9.1 20.8 101 52 6 d NOEC growth rate 157 2 34 [91] Chlorella sp. <	Chlorella sp.		y U0 ₂ SO ₄ x 3H ₂ O		S	am	6.5	27	2-4			72 h	E	C10	growth rate	11	3	26,33	[90]
Chlorella sp. y S nw 6.5-6.8 29 3.9 11 4.1 72 h NOEC growth rate 150 2 34 [91] Chlorella sp. y S nw 6.2-6.4 29 3.9 3.4 72 h NOEC growth rate 109 2 34 [91] Chlorella sp. y S nw 6.4-6.6 29 3.9 7 8.1 72 h NOEC growth rate 109 2 34 [91] Chlorella sp. y S nw 6.3-6.6 29 3.9 <5	Chlorella sp.		y z z z		S	am	6.4-6.6	29	3.6	2.63	-	72 h	Ν	IOEC	growth rate	38	2	34	[91]
Chlorella sp. y S nw 6.2-6.4 29 3.9 3.4 72 h NOEC growth rate 109 2 34 [91] Chlorella sp. y S nw 6.4-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y S nw 6.3-6.6 29 3.9 -7 8.1 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y S nw 6.3-6.6 29 3.9 -5 2.6 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y R 7.1-9.1 20.8 101 52 6 d NOEC growth rate 17 2 3,39 [93] Euglena gracills cells from 4 d old cult. y U0_2SO_4 x 3H_2O S am 6 28 0.7 50 30 96 h EC10 growth rate 17 2 3,39 93	Chlorella sp.		Y		S	nw	6.5-6.8	29	3.9	11	4.1	72 h	Ν	IOEC	growth rate	150	2	34	[91]
Chlorella sp. y S nw 6.4-6.6 29 3.9 7 8.1 72 h NOEC growth rate 157 2 34 [91] Chlorella sp. y S nw 6.3-6.6 29 3.9 <5	Chlorella sp.		ý		S	nw	6.2-6.4	29	3.9		3.4	72 h	Ν	IOEC	growth rate	109	2	34	[91]
Chlorella sp. y S nw 6.3-6.6 29 3.9 < 5 2.6 72 h NOEC growth rate 72 2 34 [91] Cryptomonas erosa y R 7.1-9.1 20.8 101 52 6 d NOEC 1310 4 4 66 Cryptomonas erosa y R 7.1-9.1 20.8 101 52 6 d EC10 growth rate 72 2 3.4 [6] Cryptomonas erosa y R 7.1-9.1 20.8 101 52 6 d EC10 growth rate 5 3.3 93 2.3,39 [93] Euglena gracilis cells from 4 d old cult. y U0_2SQ_4 x 3H_2O S am 6 28 0.7 50 30 96 h EC10 growth rate 17 2 3,39 [93] Pseudokirchneriella subcapitata y U0_2(NO_3)_x x 6H_2O R 7.8-9.7 22 70 64 72 h EC10 growth 57 4 4,10 [6] Pseudokirchneriella subcapitata y<	Chlorella sp.		y		S	nw	6.4-6.6	29	3.9	7	8.1	72 h	Ν	IOEC	growth rate	157	2	34	[91]
Cryptomonas erosa y R 7.1-9.1 20.8 101 52 6 d NOEC 1310 4 4 [6] Cryptomonas erosa y R 7.1-9.1 20.8 101 52 6 d NOEC 1310 4 4 [6] Cryptomonas erosa y R 7.1-9.1 20.8 101 52 6 d EC10 growth 172 4 4,10 [6] Euglena gracilis cells from 4 dold cult. y U0 ₂ SO ₄ x 3H ₂ O S am 6 28 0.7 50 10 96 h EC10 growth rate 5 2 3,39 [93] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h NOEC 570 4 4 [6] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h EC10 growth 57.4 4,10 [6] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O S 6.8-8.2 <t< td=""><td>Chlorella sp.</td><td></td><td>V V</td><td></td><td>S</td><td>nw</td><td>6.3-6.6</td><td>29</td><td>3.9</td><td><5</td><td>2.6</td><td>72 h</td><td>Ν</td><td>IOEC</td><td>growth rate</td><td>72</td><td>2</td><td>34</td><td>[91]</td></t<>	Chlorella sp.		V V		S	nw	6.3-6.6	29	3.9	<5	2.6	72 h	Ν	IOEC	growth rate	72	2	34	[91]
Cryptomonas erosa y R 7.1-9.1 20.8 101 52 6 d EC10 growth 172 4 4,10 [6] Euglena gracilis cells from 4 d old cult. y U0 ₂ SO ₄ x 3H ₂ O S am 6 28 0.7 50 10 96 h EC10 growth rate 5 2 3,39 [93] Euglena gracilis cells from 4 d old cult. y U0 ₂ SO ₄ x 3H ₂ O S am 6 28 0.7 50 10 96 h EC10 growth rate 5 2 3,39 [93] Euglena gracilis cells from 4 d old cult. y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h NOEC 57 4 4.10 [6] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h EC10 growth 57 4 4.10 [6] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O S 6.8-8.2 24-26 5-228 7-8 72 h EC10 growth	Cryptomonas erosa		Y		R		7.1-9.1	20.8	101	52		6 d	Ν	IOEC		1310	4	4	[6]
Euglena gracilis cells from 4 d old cult. y U0 ₂ SO ₄ x 3H ₂ O S am 6 28 0.7 50 10 96 h EC10 growth rate 5 2 3,39 [93] Euglena gracilis cells from 4 d old cult. y U0 ₂ SO ₄ x 3H ₂ O S am 6 28 0.7 50 30 96 h EC10 growth rate 17 2 3,39 [93] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h NOEC 57 4 4.10 [6] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h EC10 growth 57 4 4.10 [6] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O S 6.8-8.2 24-26 5-228 7.8 72 h EC10 growth 5.4-120 4 3,4,10,37 [6] Scenedesmus quadricauda U0 ₂ Ac ₂ x 2H ₂ O S am 7.5 24 204 96 h NOEC growth	Cryptomonas erosa		ý		R		7.1-9.1	20.8	101	52		6 d	E	C10	growth	172	4	4,10	[6]
Euglena gracilis cells from 4 d old cult. y U0 ₂ SO ₄ x 3H ₂ O S am 6 28 0.7 50 30 96 h EC10 growth rate 17 2 3,39 [93] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h NOEC 570 4 4.10 [6] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h EC10 growth rate 17 2 3,39 [93] Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O R 7.8-9.7 22 70 64 72 h EC10 growth 57 4 4.10 [6] Scenedesmus quadricauda y U0 ₂ (NO ₃) ₂ x 6H ₂ O S 6.8-8.2 24-26 5-28 7-8 72 h EC10 growth 5.4-120 4 3.4,10,37 [6] Scenedesmus quadricauda U0 ₂ Ac ₂ x 2H ₂ O S am 7.5 24 204 96 h NOEC growth 2200 3 1,43	Euglena gracilis	cells from 4 d old cult.	y UO ₂ SO ₄ x 3H ₂ O		S	am	6	28	0.7	50	10	96 h	E	C10	growth rate	5	2	3,39	[93]
Pseudokirchneriella subcapitata y U02(NO3)2 x 6H2O R 7.8-9.7 22 70 64 72 h NOEC 570 4 4 [6] Pseudokirchneriella subcapitata y U02(NO3)2 x 6H2O R 7.8-9.7 22 70 64 72 h EC10 growth 57 4 4,10 [6] Pseudokirchneriella subcapitata y U02(NO3)2 x 6H2O S 6.8-8.2 24-26 5-228 7-8 72 h EC10 growth 5.4-120 4 3,4,10,37 [6] Scenedesmus quadricauda U02Ac2 x 2H2O S 6.8-8.2 24-26 5-228 7-8 72 h EC10 growth 5.4-120 4 3,4,10,37 [6] Scenedesmus quadricauda U02Ac2 x 2H2O S am 7.5 24 204 96 h NOEC growth 2200 4* 38 [112] Scenedesmus quadricauda n U02Ac2 x 2H2O S am 7.5 24 204 96 h NOEC growth 2200 3 1,43 [113] Protozoa U02Ac2 x 2H2O S	Euglena gracilis	cells from 4 d old cult.	y UO ₂ SO ₄ x 3H ₂ O		S	am	6	28	0.7	50	30	96 h	E	C10	growth rate	17	2	3,39	[93]
Pseudokirchneriella subcapitata y U02(NO3)2 x 6H2O R 7.8-9.7 22 70 64 72 h EC10 growth 57 4 4,10 [6] Pseudokirchneriella subcapitata y U02(NO3)2 x 6H2O S 6.8-8.2 24-26 5-228 7-8 72 h EC10 growth 5.4-120 4 3,4,10,37 [6] Scenedesmus quadricauda U02Ac2 x 2H2O 96 h NOEC growth 2200 4* 38 [112] Scenedesmus quadricauda n U02Ac2 x 2H2O S am 7.5 24 204 96 h NOEC growth 2200 3 1,43 [113] Protozoa U02Ac2 x 2H2O S 7.5-7.8 27 214 28 h NOEC food consumption 2800 3 . [130]	Pseudokirchneriella subcapitat	ta	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		7.8-9.7	22	70	64		72 h	N	IOEC		570	4	4	[6]
Pseudokirchneriella subcapitata y U0 ₂ (NO ₃) ₂ x 6H ₂ O S 6.8-8.2 24-26 5-228 7-8 72 h EC10 growth 5.4-120 4 3,4,10,37 [6] Scenedesmus quadricauda U0 ₂ Ac ₂ x 2H ₂ O 96 h NOEC growth 2200 4* 38 [112] Scenedesmus quadricauda n U0 ₂ Ac ₂ x 2H ₂ O S am 7.5 24 204 96 h NOEC growth 2200 3 1,43 [113] Protozoa Microregma heterostoma U0 ₂ Ac ₂ x 2H ₂ O S 7.5-7.8 27 214 28 h NOEC food consumption 28000 3 [130]	Pseudokirchneriella subcapitat	ta	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		7.8-9.7	22	70	64		72 h	E	C10	growth	57	4	4,10	[6]
Scenedesmus quadricauda UO2Ac2 x 2H2O 96 h NOEC growth 2200 4* 38 [112] Scenedesmus quadricauda n UO2Ac2 x 2H2O S am 7.5 24 204 96 h NOEC growth 2200 3 1,43 [113] Protozoa Microregma heterostoma UO2Ac2 x 2H2O S 7.5-7.8 27 214 28 h NOEC food consumption 28000 3 [130]	Pseudokirchneriella subcapitat	ta	y UO ₂ (NO ₃) ₂ x 6H ₂ O		S		6.8-8.2	24-26	5-228	7-8		72 h	E	C10	growth	5.4-120	4	3,4,10,37	[6]
Scenedesmus quadricauda n UO ₂ Ac ₂ x 2H ₂ O S am 7.5 24 204 96 h NOEC growth 2200 3 1,43 [113] Protozoa Microregma heterostoma UO ₂ Ac ₂ x 2H ₂ O S 7.5-7.8 27 214 28 h NOEC food consumption 28000 3 [130]	Scenedesmus quadricauda		UO ₂ Ac ₂ x 2H ₂ O									96 h	N	IOEC	growth	2200	4*	38	[112]
Protozoa Microregma heterostoma U02Ac2 x 2H2O S 7.5-7.8 27 214 28 h NOEC food consumption 28000 3 [130]	Scenedesmus quadricauda		n UO ₂ Ac ₂ x 2H ₂ O		S	am	7.5	24	204			96 h	Ν	IOEC	growth	2200	3	1,43	[113]
Protozoa Microregma heterostoma U02Ac2 x 2H2O S 7.5-7.8 27 214 28 h NOEC food consumption 28000 3 [130]				-	-	-			-										
Microregma heterostoma U0 ₂ Ac ₂ x 2H ₂ O S 7.5-7.8 27 214 28 h NOEC food consumption 28000 3 [130]	Protozoa				_														
	Microregma heterostoma		$UO_2Ac_2 \times 2H_2O$		S		7.5-7.8	27	214			28 h	Ν	IUEC	tood consumption	28000	3		[130]

Species	Species	A Test	Purity	Test	Test	pН	Т	Hardnes	s Alkalinit	y DOC	Exp.	Crit.	Endpoint	Value	Ri	Notes	Ref
•	properties	compound	,	type	water	•		CaCO₃	CaCO ₃		time						
U			[%]				[°C]	[mg/L]	[mg/L]	[mg/L	.]			[µg U/L]			
Macrophyta																	
Lemna aequinoctialis		y UO ₂ SO ₄ x 3H ₂ O		R	am	6.5	27	40	19		96 h	LOEC	growth rate	112	2	40,71	[95]
Lemna aequinoctialis		$n UO_2SO_4 \times 3H_2O$		S	nw	6.7-7.5	29	3.9-4.8		3-4	96 h	NOEC	growth rate	82	2	41	[96]
Lemna aequinoctialis		n UO ₂ SO ₄ x 3H ₂ O		5	nw	6.7-7.5	29	3.9-4.8		3-4	96 h	ECIU	growth rate	189	2	41	[96]
Lemna aequinoctialis		<u>y UO₂SO₄ x 3H₂O</u>		5	nw	6.6	29	3.9-4.8		3-4	96 h	NUEL EC10	growth rate	221	2	3,42	[96]
Lemna aequinoctialis		<u>y UO₂SO₄ x 3H₂O</u>		5	nw	6.7	29	2040		2 4	90 II	ECIU	growth rate	234	2	2 4 2	[90]
Lemna aequinoctialis		y UO ₂ SO ₄ x 3H ₂ O		5	nw	6.7	29	3 9-4 8		3-4	90 li 96 h	FC10	growth rate	220	2	3,42	[96]
Lemna aequinoctialis		y UO2504 x 3H20		S	nw	6.9	20	3 9-4 8		3-4	96 h	NOEC	growth rate	80	2	3 4 2	[96]
Lemna aequinoctialis		y U02504 x 3H20		5	nw	6.9	29	3 9-4 8		3-4	96 h	FC10	growth rate	191	2	3 42	[96]
Lemna gibba		V		R	am	0.5		010 110		5.	5011	NOEC	vield	< 100	3	6	[131]
Lemna gibba		n UO ₂ (NO ₃) ₂ x 6H ₂ O		S	am	6.5	24/16	29			21 d	NOEC	growth rate	< 50	3	45,77	[132]
Lemna gibba		y UO ₂ (NO ₃) ₂ x 6H ₂ O	ag.	R	am		24/16	6			21 d	EC10	growth rate	46	3	2,13,17,46,47	[97]
Lemna gibba		y UO ₂ (NO ₃) ₂ x 6H ₂ O	ag.	R	am		24/16	6			21 d	EC10	growth rate	0.29	3	2,13,17,46,47	[97]
Lemna gibba		y UO ₂ (NO ₃) ₂ x 6H ₂ O	ag.	R	am		24/16	6			21 d	EC10	growth rate	105	3	2,17,46	[97]
Lemna gibba		y UO ₂ (NO ₃) ₂ x 6H ₂ O	ag.	R	am		24/16	6			21 d	EC10	growth rate	54	3	2,13,17,46,47	[97]
Lemna gibba		y UO ₂ (NO ₃) ₂ x 6H ₂ O	ag.	R	am		24/16	6			21 d	EC10	growth rate	>7000	3	2,17,44,46	[97]
Lemna minor		y UO ₂ (NO ₃) ₂ x 6H ₂ O		S		5.8-7.4		35	7-9		7 d	EC10	frond no	3400	4	3,4,10	[6]
Lemna minor		y UO ₂ (NO ₃) ₂ x 6H ₂ O		S		5.8-7.4		35	7-9		7 d	EC10	dry weight	3100	4	3,4,10	[6]
Fungi																	
Hansenula fabianii		v UO ₂ (NO ₃) ₂ x 6H ₂ O		S	am		30				165 h	NOEC	arowth	< 23800	2	2,47,48	[133]
Saccharomyces cerevisiae		y UO ₂ (NO ₃) ₂ x 6H ₂ O		S	am		30				165 h	NOEC	growth	< 23800	3	2,17,47	[133]
Chamanhaun																	
Hydra viridissima	adult	V		D	D14/	6.5	30	4			06 h	NOEC	population growth	<140	1	3 / 11 /0	[00]
Hydra viridissima	adult	Y		R	nw	6.5	30	4			96 h	NOEC	population growth	< 170	4	3 4 11 50	[99]
Hydra viridissima	adult	Y	an	R	am	6	27	30			96 h	FC10	population growth	49	2	3 11 51	[99]
Hydra viridissima	adult	<u>у</u> У	a.g.	R	am	6	27	3.9			96 h	NOEC	population growth	40	2	3 11 51	[99]
Hydra viridissima	dddre	U02S04 x 3H20	u.g.	R	nw	6.1-6.7	30	0.19			72 h	NOEC	population growth	< 200	3	1	[134]
Hvdra viridissima		UO ₂ SO ₄ x 3H ₂ O		R	nw	6.1-6.7	30				5 d	NOEC	population growth	150	3	1	[135]
Hydra viridissima		U02S04 x 3H20		R	nw	6.5	30					NOEC	population growth	< 150	3	1	[135]
Hydra viridissima		y		R	am	6	27	6.6			96 h	NOEC	population growth	< 32	2	52	[98]
Hydra viridissima		ý		R	am	6	27	165			96 h	NOEC	population growth	< 90	2	52	[98]
Hydra viridissima		У		R	am	6	27	165			96 h	NOEC	population growth	< 42	2	52	[98]
Hydra viridissima		У		R	am	6	27	330			96 h	NOEC	population growth	< 62	2	52	[98]
Hydra vulgaris	adult	У		R	nw	6.5	30	4			96 h	NOEC	population growth	<649	4	3,4,11,49	[99]
Hydra vulgaris		UO ₂ SO ₄ x 3H ₂ O		R	nw	6.1-6.7	30					LOEC	population growth	≤ 400	3	1	[135]
Mollusca																	
Amerianna cumingi	adult, 10-12.9 mm	y UO₂SO₄ x 3H₂O		R	nw	5.8	30	2.7-3.7		2-6	96 h	NOEC	egg production	60	2	3,53,54	[96]
Amerianna cumingi	adult, 10-12.9 mm	v UO2SO4 x 3H2O		R	nw	5.8	30	2.7-3.7		2-6	96 h	EC10	egg production	20	2	3.53.54	[96]
Amerianna cumingi	adult, 10-12.9 mm	y UO ₂ SO ₄ x 3H ₂ O		R	nw	5.9	30	2.7-3.7		2-6	96 h	NOEC	egg production	29	2	3,53,54	[96]
Amerianna cumingi	adult, 10-12.9 mm	y UO ₂ SO ₄ x 3H ₂ O		R	nw	5.9	30	2.7-3.7		2-6	96 h	EC10	egg production	5	2	3,53,54	[96]
Amerianna cumingi	adult, 10-12.9 mm	y UO ₂ SO ₄ x 3H ₂ O		R	nw	7.3±1	30	2.7-3.7		2-6	96 h	NOEC	egg production	155	2	3,53,54	[96]
Amerianna cumingi	adult, 10-12.9 mm	y UO ₂ SO ₄ x 3H ₂ O		R	nw	7.3±1	30	2.7-3.7		2-6	96 h	EC10	egg production	13	2	3,53,54	[96]
Amerianna cumingi	adult, 10-12.9 mm	y UO ₂ SO ₄ x 3H ₂ O		R	nw	7.3±1	30	2.7-3.7		2-6	96 h	NOEC	egg production	16	2	3,53,54	[96]
Amerianna cumingi	adult, 10-12.9 mm	y UO ₂ SO ₄ x 3H ₂ O		R	nw	7.3±1	30	2.7-3.7		2-6	96 h	EC10	egg production	15	2	3,53,54	[96]
Crustacea																	
Ceriodaphnia dubia	≤ 24 h	v UO2(NO3)2 x 6H2O		R	nw	6.7-7.6	25-26	6.1	1.1		7 d	NOEC	reproduction	< 1.3	2	3,9,44,55	[107]
Ceriodaphnia dubia	≤ 24 h	v UO ₂ (NO ₃) ₂ x 6H ₂ O		R	nw	/10	24-26	3.8	3		7 d	NOEC	reproduction	2.50	2	3,9,56	[107]
Ceriodaphnia dubia	≤ 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R	nw		24-26	3.8	3		7 d	EC10	reproduction	2.40	2	3,9,46	[107]
Ceriodaphnia dubia	≤ 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R	nw	6.0-6.2	24-25	3.4-3.7	1.7-2.1		7 d	NOEC	reproduction	< 7	2	3,9,57	[107]
Ceriodaphnia dubia	≤ 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R	nw	6.0-6.2	24-25	3.4-3.7			7 d	EC10	reproduction	9	2	3,9,57	[107]
Ceriodaphnia dubia	≤ 24 h	y HUO ₂ PO ₄ x 4H ₂ O		R	nw	6.0-6.3	24-25	3.1-4.0			7 d	NOEC	reproduction	< 6	2	2,7,9	[107]

Species	Species	A Test	Purity	Test [·]	Test	pН	Т	Hardnes	s Alkalinity	y DOC	Exp.	Crit.	Endpoint	Value	Ri Notes	Ref
	properties	compound		type	water			CaCO ₃	CaCO ₃		time					
			[%]				[°C]	[mg/L]	[mg/L]	[mg/L	.]			[µg U/L]		
Ceriodaphnia dubia	≤ 24 h	y HUO ₂ PO ₄ x 4H ₂ O		R	nw	6.0-6.3	24-25	3.1-4.0			7 d	EC10	reproduction	5	2 2,7,9,46	[107]
Ceriodaphnia dubia	≤ 24 h	y HUO ₂ PO ₄ x 4H ₂ O		R	nw	5.9-6.4	24-25	3.8			7 d	NOEC	reproduction	50	2 3,9	[107]
Ceriodaphnia dubia	≤ 24 h	y HUO ₂ PO ₄ x 4H ₂ O		R	nw	5.9-6.4	24-25	3.8			7 d	EC10	reproduction	14	2 3,9,46	[107]
Ceriodaphnia dubia	≤ 24 h	y HUO ₂ PO ₄ x 4H ₂ O		R	nw	5.9-6.3	24-25	2.6-3.6	1.3-3.6		7 d	NOEC	reproduction	2	2 3,9	[107]
Ceriodaphnia dubia	≤ 24 h	y HUO ₂ PO ₄ x 4H ₂ O		R	nw	5.9-6.3	24-25	2.6-3.6	1.3-3.6		7 d	EC10	reproduction	18	2 3,9,46	[107]
Ceriodaphnia dubia	≤ 24 h	n HUO ₂ PO ₄ x 4H ₂ O		R	nw	6.0-6.8	24-26	5.0-5.1			7 d	NOEC	reproduction	50	3 2,9	[107]
Ceriodaphnia dubia	≤ 24 h	n HUO ₂ PO ₄ x 4H ₂ O		R	nw	6.0-6.8	24-26	5.0-5.1			7 d	EC10	reproduction	52	3 2,9,46	[107]
Ceriodaphnia dubia	≤ 24 h	y UO₂		R	nw	6.0-6.2	24-25	3.4-4.0			7 d	NOEC	reproduction	21	2 9,58	[107]
Ceriodaphnia dubia	≤ 24 h	y UO ₂		R	nw	6.0-6.2	24-25	3.4-4.0			7 d	EC10	reproduction	0.02	3 9,46,58,59	[107]
Ceriodaphnia dubia		y soil extract		R	nw	8.49	25	190	148		7 d	NOEC	reproduction	1970	3 60	[108]
Ceriodaphnia dubia		y soil extract		R	nw	8.49	25	190			7 d	EC10	reproduction	4950	3 29,60	[108]
Ceriodaphnia dubia	neonates	$y UO_2(NO_3)_2 \times 6H_2O$		R		8.2-8.4	23.9	76			7 d	EC10	reproduction	1900	4 4	[6]
Ceriodaphnia dubia	neonates	$y UO_2(NO_3)_2 \times 6H_2O$		R		8.2-8.4	23.9	76			7 d	NOEC		1540	4 4	[6]
Ceriodaphnia dubia	< 24 h	$y UO_2(NO_3)_2 \times 6H_2O$		R		6.5-7.3	21-26	5			7 d	EC10	reproduction	33	4 4,61	[6]
Ceriodaphnia dubia	< 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.5-7.3	21-26	1/			/ d	EC10	reproduction	59	4 4,61	[6]
Ceriodaphnia dubia	< 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.5-7.3	21-26	124			/ d	EC10	reproduction	22	4 4,61	[6]
Ceriodaphnia dubia	< 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.5-7.3	21-26	252		=	/ d	EC10	reproduction	25	4 4,61	[6]
Daphnia magna	first instar	y UO ₂ (NO ₃) ₂ x 6H ₂ O	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21 d	NOEC	mortality	< 520	2 3,48,62	[40]
Daphnia magna	first instar	y UO ₂ (NO ₃) ₂ x 6H ₂ O	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21 d	EC10	mortality	330	2 3,48,62	[40]
Daphnia magna	first instar	y UO ₂ (NO ₃) ₂ x 6H ₂ O	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21 d	 NOEC	mortality	200	2 3,48,62	[40]
Daphnia magna	first instar	y UO ₂ (NO ₃) ₂ x 6H ₂ O	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21 d	 EC10	mortality	840	2 3,48,62	[40]
Daphnia magna	first instar	<u>y UU₂(NU₃)₂ x 6H₂U</u>	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21 d	NOEC	reproduction	< 520	2 3,48,62	[40]
Daphnia magna	first instar	$y UO_2(NO_3)_2 \times 6H_2O$	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21 d		reproduction	380	2 3,48,62	[40]
Daphnia magna	first instar	y UO ₂ (NO ₃) ₂ x 6H ₂ O	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	210		reproduction	< 520	2 3,48,62	[40]
Daphnia magna	first instar	$y UU_2(INU_3)_2 \times 6H_2U$	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21 d		reproduction	1200	2 3,48,62	[40]
Daphnia magna	first instar	<u>y UU₂(NU₃)₂ x 6H₂U</u>	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21.0		reproduction	1290	2 3,48,62	[40]
Daphnia magna	first instar	<u>y UU₂(NU₃)₂ x 6H₂U</u>	rg	R	nw	7.9-8.0	20	66-73	54-60	1.15	21.0		reproduction	2080	2 3,48,62	[40]
Daphnia magna	first instar	$y UU_2(NU_3)_2 \times 6H_2U$	rg	R	nw	7.9-8.0	20	66 73	54-60	1.15	21.0		reproduction	1290	3 3,48,62,63	[40]
Daphnia magna	III'SL IIISLAI	y υυ ₂ (NU ₃) ₂ x σΠ ₂ υ	rg	ĸ	11W	7.9-6.0	20	00-73	54-60	1.15	21 U 21 d	EC10	reproduction	1240	3 3,40,02,03	[40]
Daphnia magna				D	aiii 2m	7.0	20	250	27		21 d		repro + growth	 < 10	2 9 64	[136]
Daphnia magna	< 21 h	<u>y UO (NO) x 6H O</u>		D	am 2m	7.0	20	250	2.7		21 d		mortality	74.7	2 3,04	[114]
Daphnia magna	< 24 h	<u>y UO (NO) x 6H O</u>		D	am 2m	7.0	20	254	2.7		21 d	NOEC	reproduction	10.1	2 3,05	[114]
Daphnia magna	< 24 h	y UO ₂ (NO ₂) ₂ x 6H ₂ O		R	am	7.0	20	254	2.7		21 d	 FC10	reproduction	10.1	2 3,05	[114]
Daphnia magna	neonates	y UO-(NO-)- x 6H-O		D	ann	8.0-8.4	20	75	2.7		21 d	 EC10	reproduction	570	2 5,05	[114]
Hvalella azteca	neonaces	y soil extract		R	nw	7 91	22	157	137		14 d		survival	1520	3 60	[108]
Hyalella azteca		y soil extract		R	nw	7.91	23	157	157		14 d	LC10	survival	230	3 29 60	[108]
Hyalella azteca	2-9 days old	y UO ₂ (NO ₂) ₂ x 6 H ₂ O		R		8.2	23	73	80		28 d	EC10	arowth	12	4 4 10	[6]
Hyalella azteca	8-9 days	y UO ₂ (NO ₂) ₂ x 6 H ₂ O		R		6.4-7.1	21-23	17-238	00		14 d	LC10	survival	55-88	4 4.10	[6]
Hyalella azteca	0 9 44/0	n		S 1	tw	8.21	21 20	124	84	1.4	7 d	1010	mortality	1651	3 1.92.97	[137]
Hyalella azteca		v		S	am	7.39		18	14	0.28	7 d	LC50	mortality	21	3 3.92.93.97	[137]
Hyalella azteca	adult	$\frac{1}{2}$ V UO ₂ (NO ₂) ₂ X 3 H ₂ O		R	am	6.9-7.1	25	120			7 d	C10	mortality	72	2 94.95	[138]
Hyalella azteca	iuvenile	v UO ₂ (NO ₃) ₂ x 3 H ₂ O		R	am	6.9-7.1	25	120			7 d	LC10	mortality	290	2 94.95	[138]
Moinodaphnia macleavi	< 6h. lab cultured strain	v UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	reproduction	8	2 5.9.66	[117]
Moinodaphnia macleavi	< 6h, lab cultured strain	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	reproduction	46	2 5,9,67	[117]
Moinodaphnia macleavi	< 6h, lab cultured strain	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	EC10	reproduction	0.86	2 5.9.29.68	[117]
Moinodaphnia macleavi	< 6h, lab cultured strain	v UO ₂ SO₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	EC10	reproduction	39.1	2 5.9.29.68	[117]
Moinodaphnia macleavi	< 6h, lab cultured strain	v UO ₂ SO₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	EC10	reproduction	39.1	2 5.9.29.68	[117]
Moinodaphnia macleavi	< 6h, wild strain BB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	reproduction	25	2 5,9,66	[117]
Moinodaphnia macleavi	< 6h, wild strain BB	y UO₂SO₄ x 3H₂O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	reproduction	29	2 5,9,67	[117]
Moinodaphnia macleayi	< 6h, wild strain BB	y UO2SO4 x 3H2O		R	nw	6.9-7.1	27	4-6			5 d	EC10	reproduction	25.4	2 5,9,29,68	[117]
Moinodaphnia macleayi	< 6h, wild strain DiB	y U02SO4 x 3H2O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	reproduction	22	2 5,9,66	[117]
Moinodaphnia macleayi	< 6h, wild strain DiB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	reproduction	31	2 5,9,67	[117]
Moinodaphnia macleayi	< 6h, wild strain DiB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	EC10	reproduction	35.6	2 5,9,29,68	[117]
Moinodaphnia macleayi	< 6h, wild strain DiB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	EC10	reproduction	21.2	2 5,9,29,68	[117]
Moinodaphnia macleayi	< 6h, wild strain DjB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	EC10	reproduction	21.2	2 5,9,29,68	[117]

Species	Species	A Test	Purity	Test	Test	nН	Т	Hardnes	s Alkalinit	V DOC	Exn.	Crit	Endpoint	Value	Ri	Notes	Ref
openeo	properties	compound	· uney	type	water	pri	·	CaCO3	CaCO ₃	., 200	time	one.	Lindpolite	, and c			
	P . P		[%]	-71			[°C]	[mg/L]	[mg/L]	[mg/L	.]			[µg U/L]			
Moinodaphnia macleayi	< 6h, lab cult. strain	y UO₂SO₄ x 3H₂O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	mortality	4	2	5,9,66	[117]
Moinodaphnia macleayi	< 6h, lab cult. strain	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	mortality	46	2	5,9,67	[117]
Moinodaphnia macleayi	< 6h, lab cult. strain	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	EC10	mortality	1.6	2	5,9,29,68	[117]
Moinodaphnia macleayi	< 6h, wild strain BB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	mortality	25	2	5,9,66	[117]
Moinodaphnia macleayi	< 6h, wild strain BB	y UO₂SO₄ x 3H₂O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	mortality	29	2	5,9,67	[117]
Moinodaphnia macleayi	< 6h, wild strain BB	y UO₂SO₄ x 3H₂O		R	nw	6.9-7.1	27	4-6			5 d	EC10	mortality	16.7	2	5,9,29,68	[117]
Moinodaphnia macleayi	< 6h, wild strain DjB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	mortality	22	2	5,9,66	[117]
Moinodaphnia macleayi	< 6h, wild strain DjB	y UO ₂ SO ₄ x 3H ₂ O		R	nw	6.9-7.1	27	4-6			5 d	NOEC	mortality	31	2	5,9,67	[117]
Moinodaphnia macleayi	< 6h	y UO ₂ SO ₄ x 3H ₂ O		R	nw	5.9-6.3	27				5 d	NOEC	reproduction	10	3	69	[116]
Moinodaphnia macleayi	< 6h	<u>y</u>		R	n	6.5	2/	4			5 d	NOEC	reproduction	17.5	4	8	[99]
Procambarus clarkii	<u>്, 27.2 g, 9 cm</u>	y UO ₂ (NO ₃) ₂ depl.		R R	am	/	17.2	70			100	NOEC	mortality	≥ 8340	2	3,70	[62]
Simocephalus serrulatus	neonates	y 002504 x 3H20		R		8.0-8.4	17.2	78			21 d	NUEC	reproduction	460	4	4	[6]
Simocephalus serrulatus	neonates	y υυ ₂ SU ₄ x 3H ₂ U		к		8.0-8.4	17.2	78			21 d	ECIU	reproduction	480	4	4,10	[6]
Insecta																	
Chironomus tentans	10 day old	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R	tw	7.8	23	132-136	65-66		51 d	LOEC	emerging	≤ 31	2	3,29,71,72,73	[139]
Chironomus tentans	10 day old	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R	tw	7.8	23	132-136	65-66		51 d	EC10	emerging	25	2	3,29,71,72,73	[139]
Chironomus tentans	10 day old	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R	tw	7.8	23	132-136	65-66		10 d	EC10	dry weight	11.2	2	3,29,72,73	[139]
Chironomus tentans	larvae	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		7.18	23.1	125	84		10 d	IC50	growth	10200	4	4	[6]
Chironomus tentans	larvae	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		8.0	23.1	80			28 d	EC50	growth	4320	4	4	[6]
Chironomus riparius	1 d old	y UO ₂ (NO ₃) ₂ x 6H ₂ O		S	am	6.8-7.8	20-22	38.5			10 d	LC50	mortality	24.8	3	3,46,96	[140]
Discos																	
Catostomus commersoni	fry 52 days post fert.	v UO ₂ (NO ₂) ₂ x 6H ₂ O	99	R	nw	7.9	14.3	72	68		30 d	NOEC	survival	6400	2	3.7.74.76	[141]
Catostomus commersoni	fry 52 days post fert.	y UO ₂ (NO ₂) ₂ x 6H ₂ O	99	R	nw	7.9	14.3	72	68		30 d	NOEC	length	6400	2	3.7.74.76	[141]
Catostomus commersoni	fry 52 days post fert.	y UO ₂ (NO ₃) ₂ x 6H ₂ O	99	R	nw	7.9	14.3	72	68		30 d	NOEC	drv weight	6400	2	3.7.74.76	[141]
Danio rerio	eggs	v UO ₂ (NO ₃) ₂ depl.		R	am	9.56	25	48.4				NOEC	hatching time	138.2	2	3,75,76	[38]
Danio rerio	eggs	y $UO_2(NO_3)_2$ depl.		R	am	9.56	25	48.4			9 and 15 d post hatching	LOEC	length	≤ 16.8	2	3,75,76	[38]
Danio rerio	eaas	v UO ₂ (NO ₃) ₂ depl.		R	am	9.56	25	48.4			9 d post hatching	LOEC	drv weight	≤ 16.8	2	3.75.76	[38]
Danio rerio	eggs	y $UO_2(NO_3)_2$ depl.		R	am	9.56	25	48.4			from fert. up to 15	LOEC	mortality	≤ 16.8	2	3,75,76	[38]
Danio rerio	eaas	v UO ₂ (NO ₂) ₂ depl.		R	am	9.56	25	48.4			24 h post fert.	NOEC	embryonic develop.	> 212	2	3.75.76	[38]
Danio rerio	adult. 0.22 g	$UO_2(NO_3)_2$ depl.		R	am	6.5	24				20 d	NOEC	arowth	≥ 483	2	3.74	[36]
Danio rerio	eaas	v UO ₂ (NO ₃) ₂ x 6H ₂ O		R	nw	7.7	24		20		18 d	NOEC	hatching time	< 30	3	6,45,78	[92]
Danio rerio	eggs	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R	nw	7.7	24		20		18 d	NOEC	mortality	<300	3	6,45,78	[92]
Danio rerio	adults	y depleted		R	am	6.5	26				37 d	NOEC	egg production	< 100	2	3,79	[34]
Esox lucius	embryo	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		7.9	8.1	63	60		65 d	NOEC		1510	4	4	[6]
Mogurnda mogurnda	< 10 h	У		R	nw	6.6-6.8	27	3-6	7	2.1	28 d	NOEC	mortality	1400	2	2,7	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	6.6-6.8	27	3-6	7	2.1	28 d	EC10	dry weight	1014	2	2,7,29	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	6.6-6.8	27	3-6	7	2.1	28 d	NOEC	dry weight	770	2	2,7	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	6.6-6.8	27	3-6	7	2.1	28 d	EC10	length	1233	2	2,7,29	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	6.6-6.8	27	3-6	7	2.1	28 d	NOEC	length	770	2	2,7	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	5.7-6.3	27	3-6	5	4.2	28 d	NOEC	mortality	800	2	2,7	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	5.7-6.3	27	3-6	5	4.2	28 d	EC10	dry weight	764	2	2,7,29	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	5.7-6.3	27	3-6	5	4.2	28 d	NOEC	dry weight	410	2	2,7	[39]
Mogurnda mogurnda	< 10 h	У		R	nw	5.7-6.3	27	3-6	5	4.2	28 d	EC10	length	869	2	2,7,29	[39]
Mogurnda mogurnda	< 10 h	y		R F	nw	5.7-6.3	27	3-6	5	4.2	28 d	NOEC	length	410	2	2,/	[39]
Mogurnda mogurnda	1 day, 20.8 mg fish/l	$y U(SO_4)_2 \times 4H_2O$			nw	6.4	27.1	3.2	2.99	5.07	14 d		mortality	/50	2	3,75,80	[122]
Magurnaa mogurnaa	1 day, 20.8 mg fish/l	$y \cup (SU_4)_2 \times 4H_2O$		<u>r</u>	nw	0.4	27.1	3.2	2.99	5.07	140	<u>LCI</u>	mortality	280		3,75,80,81	[122]
mogurnaa mogurnaa	1 day, 20.8 mg fish/l	y U(SU ₄) ₂ X 4H ₂ U		<u>г</u>		0.4	27.1	<u>خ.</u>	2.99	5.07	14 0		weight and length	1/00	2	3,29,75,80	[122]
Magurada magurada	1 day, 20.8 mg fish/l	y U(SO ₄) ₂ X 4H ₂ U		r F		6.4	27.1	3.2	2.99	5.07	14 U	NOEC	weight and length	> 1700	2	3,/3,00	[122]
Mogurnda mogurnda	1 day, 20.8 mg fish/i	y U(SO ₄) ₂ x 4H ₂ U		F		6.3	27.1	5.Z 4 1	2.99	5.0/	14 0 7 d	NOEC	length	2 1/90	2	375 82 02 04 05	[122]
Mogurnda mogurnda	1 day 0.36 g fish/	y U(SO ₄) ₂ x 411 ₂ U		F	nw	6.3	30	4.1	1.0	1.5	7 d		mortality	1270	2	3 75 83 84 86	[122]
Mogurnda mogurnda	1 day, 0.36 g fish/l	v U(SO ₄) ₂ x 4H ₂ O		F	nw	6.3	30	4.1	1.8	1.5	7 d	LC1	mortality	410	2	3.75.83.84.85.86	[122]
	,,,1	, -\+/2 ~20						=			-		· • · • • · • • /		-		

Species	Species	A Test	Purity	Test	Test	pН	Т	Hardnes	s Alkalinity	y DOC	Exp.	Crit.	Endpoint	Value	Ri	Notes	Ref
	properties	compound		type	water			CaCO ₃	CaCO ₃		time						
		•	[%]				[°C]	[mg/L]	[mg/L]	[mg/L]				[µg U/L]			
Mogurnda mogurnda	sac-fry (1 d)	У		R	am	6	27	3.9		< 0.2	96 h	EC10	mortality	1114	2	3,11,51	[99]
Mogurnda mogurnda	sac-fry (1 d)	у		R	am	6	27	3.9		< 0.2	96 h	NOEC	mortality	1049	2	3,11,51	[99]
Oncorhynchus mykiss	embryo	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.3-7.2	13-15	6	6-7		30 d	EC10	viability	260	4	3,4,10,61	[6]
Oncorhynchus mykiss	embryo	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.3-7.2	13-15	61	6-7		30 d	EC10	viability	480	4	3,4,10,61	[6]
Pimephales promelas	embryo, < 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.3-7.2	24-26	23	10-14		7 d	EC10	growth	1200	4	3,4,10,61	[6]
Pimephales promelas	embryo, < 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.3-7.2	24-26	72	10-14		7 d	EC10	growth	1300	4	3,4,10,61	[6]
Pimephales promelas	embryo, < 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.3-7.2	24-26	131	10-14		7 d	EC10	growth	760	4	3,4,10,61	[6]
Pimephales promelas	embryo, < 24 h	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		6.3-7.2	24-26	244	10-14		7 d	EC10	growth	980	4	3,4,10,61	[6]
Salvenius fontinalis	eggs	y UO ₂ SO ₄ x 3H ₂ O		F	nw+dw	8	13.5	201	189		77 d	NOEC	hatch., mort. growth	≥9080	3	7,75,87,88	[27]
Salvenius namaycush	embryo-alevin-fry	y UO ₂ (NO ₃) ₂ x 6H ₂ O		R		7.9-8.1	7.6-8.6	74-80			141 d	NOEC	multiple	6050	4	4,89	[6]
Amphibia																	
Xenopus laevi	embryo	y contam. soil extr.		R	nw	8.0-8.2	23-24	177-226			64 d	NOEC	development rate	< 13090	3	90,91	[142]
Xenopus laevi	embryo	y contam. soil extr.		R	nw	8.0-8.2	23-24	177			96 h	EC50	mortality/develop.	> 77720	3	90	[142]

Notes

- 1 Not analysed
- 2 Endpoint based on nominal concentrations
- 3 Endpoint based on mean measured concentrations
- 4 Original reference not available
- 5 Analysis only performed at the start of the experiment
- 6 Unclear if endpoint based on measured or nominal concentrations
- 7 Measured concentrations within 20% of nominal
- 8 Citation of unpublished data
- 9 Renewal every 24 h
- 10 EC10 calculated in cited report
- 11 Recalculated from concentration in UO₂
- 12 Not a pure culture
- 13 Endpoint extrapolated
- 14 Acetate as substrate
- 15 H2 as substrate
- 16 Sulphur (S0) as substrate
- 17 Result of analysis unknown
- 18 Effect on growth was mainly caused by increased lag times, at maximum growth for the control (24 h) there was almost no growth at the treatments. Maximum growth for lowest exposure was reached after 48 hours, finally all treatments reached the same optical density.
- 19 Growth substrate butyrate
- 20 Growth substrate dextrose
- 21 Growth substrate lactate
- 22 Growth substrate ethanol
- 23 Exponential phase of control ± 16 h
- Exponential phase of control \pm 10 h
- 25 Exponential phase of control ± 18 h
- 26 BEC10 taken over as EC10
- 27 Recalculated for exponential phase with data from graph in paper
- 28 Highest test concentration exceeds maximum water solubility not included in estimation of endpoint
- 29 Endpoint determined with data from graph in paper
- 30 Lowest exposure concentration 1 mg/L
- 31 Exposure time much longer than exponential phase of the control

- 32 Measured concentrations at the start of the experiment within 20% of nominal concentrations, endpoint based on initial measured concentrations; analysis performed at the end of the experiment showed a mass balance in each treatment of >90%, 75% in solution, 10% bound to the cell surface and ca. 15% adsorbed to the walls of the flasks, this recovery is considered high enough to assign Ri2
- 33 Endpoint based on measured concentrations, analysis only performed at the start of the experiment, mass balance at similar exposure showed only 50-70% in solution after 72 h and up to 40% of the U added adsorbed to the walls of the flasks throughout this similar test. Therefore endpoints based on initial measured concentrations considered Ri3;
- 34 Endpoint based on measured concentrations; analysis only performed at the start of the experiment, contact with the author revealed that the same apparatus was used as in Hogan et al. [96] where loss in concentration over 96 h was less than 20% therefore considered acceptable
- 35 Actual exposure 25 d but endpoint based on 48 h exposure in which full growth of the control was achieved; anaerobic test; experiment performed in pipes buffer which enabled good solubility in contrast to a bicarbonate buffer
- 36 Growth determined as CFU on agar plates (incubation at 30°C) after exposure
- 37 Unclear which of 5 values for hardness fits which of with 4 EC10 values (5.4, 55, 54, 120)
- 38 Value reported as TGK (Toxische Grenzkonzentration) considered as NOEC
- 39 Performed in low nutrient medium based on aspartic acid (150 μ M)
- 40 Measured concentrations within 20% of nominal concentrations, endpoint based on measured concentrations after renewal only, same method used as and same research group as Hogan et al. [91] for which contact with the author revealed that the same apparatus was used as in Hogan et al. [96] where loss in concentration over 96 h was less than 20% therefore considered acceptable; reported as minimum detectable effect concentration
- 41 Range finding test not analysed, a separate fate test for the higher test concentrations showed a reduction of 11 to 16% of the uranium concentration over 96 h therefore nominal concentrations considered acceptable as total, U background concentration in test water 0.016-1.67 µg/L

- 42 Analysis only performed at start of the test but a separate fate test for the higher test concentrations showed a reduction of 11 to 16% of the uranium concentration over 96 h therefore initial measured concentrations considered acceptable as total. U background concentration in test water 0.016-1.67 ug/L
- 43 In a similar paper from the same year by the same authors, this endpoint was reported one order of magnitude higher
- 44 Unreliable fit
- 45 Dose response correlation not observed
- 46 Endpoint determined with data from paper
- 47 Analysis perform through LSC
- 48 Analysis indicated constant concentration of Uranium
- 49 Test water sampled in dry season
- 50 Test water sampled in wet season
- 51 Analysis performed at start and end of the test
- 52 Same test protocol as performed by Markich and Camileri [99]
- 53 Analysis performed at start, after 48 hours and end of the test
- 54 Difference in pH between the four tests did not influence the endpoints; uranium background concentration in test water was 0.025-0.053 µg/L
- 55 Nominal NOEC was 1.5 µg/L
- 56 Nominal NOEC was 12.7 µg/L
- 57 Lowest test concentration excluded because of relative high mortality
- 58 Measurement only performed on highest concentration, NOEC corrected for ratio measured : nominal in highest concentration
- 59 No clear dose-response curve
- 60 Animals exposed to extract from soil containing more metals
- 61 According to Environment Canada methodology
- 62 Renewal every 3 days
- 63 Poor reproduction in control
- 64 Measured concentrations at renewal >70% of nominal, measured concentration of new medium within 10% of nominal
- 65 Analysis performed twice weekly
- 66 Lowest value of three experiments, middle value not reported
- 67 Highest value of three experiments, middle value not reported
- 68 Not for all experiments a reliable fit could be made
- 69 Fed with vitamin enriched fermented food and algae, concentration of uranium only determined in stock solutions added to test water
- 70 No significant mortality at the highest concentration; analysis performed before and after renewal
- 71 Renewal every 48 hours
- 72 Water spiked water-sediment system consisting of silica sand (250-425 μm); measured concentrations 78 - 86% of nominal

- 73 Analysis performed before renewal
- 74 Analysis performed repeatedly
- 75 Analysis performed daily
- 76 Analysis performed before and after renewal
- 77 Results for control not presented
- 78 Original uranium concentration in test water 0.7 μ g/L
- 79 Only two concentration tested and a blank; test concentration monitored on a daily base and corrected to nominal concentration by addition of stock solution
- 80 TOC 5.43 mg/l
- 81 Endpoint determined after 15 days additional observation in clean water
- 82 Calculation of EC10 value not possible
- 83 TOC 2.7 mg/L
- 84 Animals exposed in separate compartment of larger tank
- 85 Endpoint determined after post exposure period of 7 days
- 86 Unclear whether samples for uranium analysis taken from dilution medium or from the exposure tanks
- 87 Comparison of filtered versus unfiltered samples showed that >93% of the uranium was in the dissolved form
- 88 Control survival of fry 52% therefore Ri = 3
- 89 Following EC guidance
- 90 Test concentrations obtained by mixing 2 kg of contaminated oil with 16 L of well water for 2 months. The overlying water was used for the test. Toxicity of other elements cannot be excluded
- 91 High mortality in controls due to a parasite
- 92 Animals fed during test
- 93 Analysis performed at the end of the test, measured concentrations 39% of nominal
- 94 Measured concentrations < 80% of nominal
- 95 After communication author explained that the endpoints are based on measured concentrations; sorption to cotton gauze possible
- 96 Sediment contaminated water-sediment system; analysis performed in water during exposure; analysis performed after filtration of samples but the samples were acidified before filtration, therefore it is presumed that the measured concentration is the total concentration; water concentration increasing during exposure, therefore, the water concentration is probably overestimating the toxicity.
 - NOEC or EC10 not available

97

Table A3.3 Acute toxicity for marine organisms

Species	Species properties	А	Test compound	Purity	Test type	Test water	pН	Т	Hardness CaCO₃	Exp. time	Crit.	Endpoint	Value	Ri	Notes	Ref
	1 1			[%]	-71			[°C]	[mg/L]				[µg U/L]			
Crustacea																
Allorchestes compressa		n	$UO_2(NO_3)_2 \times 6H_2O$	AR	F	nw				4 w	EC50	growth	> 2000	3	1	[143]

Notes

1 data from tests with enriched uranium (7% 235U) not included in endpoint; not analysed

Table A3.4 Chronic toxicity for marine organisms

Tuble 715. T ellio	ne conterty for marine	or ge															
Species	Species	А	Test	Purity	Test	Test	pН	Т	Salinity	DOC	Exp.	Crit.	Endpoint	Value	Ri	Notes	Ref
	properties		compound		type	water					time						
	FF			[%]	-76-			[°C]	[‰]	[mg/L]				[µg U/L]			
Bacteria																	
Vibrio fischeri	resuspended lyophilized bacteria	n	UO ₂ Ac		S	am	6.7	15	20		2 h	NOEC	luminescence	2380	2		[144]
Crustacea																	
Allorchestes compressa		n		۸D	F	DW/					10 w	NOEC	cox ratio	100	3	1	[1/3]
Anorchestes compressa		11	002(1103)2 × 01120	AN	<u> </u>	1100					10 W	NOLC	Sex Tatio	100	5	1	[145]
Allorchestes compressa	ð	n	$UO_2(NO_3)_2 \times 6H_2O$	AR	F	nw					10 w	NOEC	respiration rate	< 100	3	1	[143]

Notes

1 Not analysed

Table A3.5 Toxicity for birds and mammals

Species	Species properties	Test compound	Purit y	Application route	Exp. time	Crit.	Endpoint	Effect conc. - water	Effect conc. Effect con - gavage/water - diet	c. Ri Notes	Ref
Mammale			[70]							liet	
Dog	beagle, 10 kg	UO ₂ E ₂		diet	30 days	NOAFI	mortality		7.7	3 1.2	[49]
Dog	beagle, 10 kg			diet	30 days	NOAEL	mortality		12.5	2 1	[49]
Dog	beagle, 10 kg	UO4		diet	30 days	NOAEL	mortality		15.8	2 1	[49]
Dog	beagle, 10 kg	UO ₂ (NO ₃) ₂ x 6H ₂ O		diet	30 days	NOAEL	mortality		47.4	2 1	[49]
Dog	beagle, 10 kg	UO ₂		diet	30 days	NOAEL	mortality		88.1	2 1	[49]
Dog	beagle, 10 kg	Na ₂ U ₂ O ₇		diet	30 days	NOAEL	mortality		75	2 1	[49]
Dog	beagle, 10 kg	$(NH_4)_2U_2O_7$		diet	30 days	NOAEL	mortality		76	2 1	[49]
Dog	beagle, 10 kg	UF ₄		diet	30 days	NOAEL	mortality		3790	3 1,2	[49]
Dog	beagle, 10 kg	U ₃ O ₈		diet	30 days	NOAEL	mortality		17000	2 1	[49]
Dog	beagle, 10 kg	UO ₂		diet	30 days	NOAEL	mortality		≥ 17600	2 1	[49]
Dog	beagle, 10 kg	UO_2F_2		diet	1 year	NOAEL	growth		1.9	3 1,2,3	[51]
Dog	beagle, 10 kg	UCl ₄		diet	1 year	NOAEL	growth		31	2 1,3	[51]
Dog	beagle, 10 kg	UO ₂ (NO ₃) ₂ x 6H2O		diet	1 year	NOAEL	growth		47	2 1,3	[51]
Dog	beagle, 10 kg	UF ₄		diet	1 year	NOAEL	growth		758	3 1,2,3	[51]
Dog	beagle, 10 kg	UO ₂		diet	1 year	NOAEL	growth		8800	2 1,3	[51]
Mouse	<u>٩</u>	$UO_2(NO_3)_2$		drinking water	15 w	NOAEL	body weight	≥242	≥100	3 4,5,6	[145]
Mouse	♀, 25-30 g	$UO_2Ac_2 \times 2H_2O$	a.g.	gavage	day 6 to 15 of gestation	NOAEL	weight gain		< 2.8	2	[146]
Mouse	₽, 25-30 g	UO ₂ Ac ₂ x 2H ₂ O	a.g.	gavage	day 6 to 15 of gestation	NOAEL	feed intake		< 2.8	2	[146]
Mouse	₽, 25-30 g	UO ₂ Ac ₂ x 2H ₂ O	a.g.	gavage	day 6 to 15 of gestation	NOAEL	foetal body weight		< 2.8	2	[146]
Mouse	₽, 26-30 g	UO ₂ Ac ₂ x 2H ₂ O	a.g.	gavage	d 13 of pregn.to day 21 of lact.	NOAEL	food intake		≥ 28	2	[50]
Mouse	₽ , 26-30 g	UO ₂ Ac ₂ x 2H ₂ O	a.g.	gavage	d 13 of pregn. to day 21 of lact.	NOAEL	body weight		≥ 28	2	[50]
Mouse	₽, 26-30 g	UO ₂ Ac ₂ x 2H ₂ O	a.g.	gavage	d 13 of pregn. to day 21 of lact.	NOAEL	mortality (parent)		0.28	3 11	[50]
Mouse	₽, 26-30 g	UO ₂ Ac ₂ x 2H ₂ O	a.g.	gavage	d 13 of pregn. to day 21 of lact.	NOAEL	litter size		2.8	2	[50]
Mouse	♀, 16.6 g	UO ₂ (NO ₃) ₂ x 6H ₂ O		drinking water	49 d	NOAEL	general health	≥ 40	≥ 6.9	2 12	[147]
Mouse	♀, 16.6 g	UO ₂ (NO ₃) ₂ x 6H ₂ O		drinking water	49 d	NOAEL	embryo develop. (oocyte quality)	10	1.9	2 12	[147]
Mouse	♀, 21 d	UO ₂ (NO ₃) ₂ x 6H ₂ O		drinking water	40 d	NOAEL	reprod. (oocyte ovulation)		≥ 10	3 4,6	[148]
Mouse	J and ₽, 28-30 g	UO2AC2 x 2H2O		drinking water	64 d	NOAEL	pregnancy rate	< 26	< 5.6	2 13,14	[149]
Mouse	26-30 g	UO ₂ Ac ₂ x 2H ₂ O		oral	60 and 14 days	NOAEL	embryo mortality		5.6	2 9	[150]
Mouse	26-30 g	UO2AC2 x 2H2O		oral	60 and 14 days	NOAEL	offspring growth (body weight)		< 2.8	2 9,15	[150]
Mouse	26-30 g	UO2Ac2 x 2H2O		oral	60 and 14 days	NOAEL	offspring growth (length)		5.6	2 9,15	[150]
Mouse	26-30 g	UO ₂ Ac ₂ x 2H ₂ O		oral	60 and 14 days	NOAEL	offspring mortality		2.8	2 9,15	[150]
Mouse	우, 28 days	UO ₂ (NO ₃) ₂ x 6H ₂ O		drinking water	30 days	NOAEL	body weight	≥ 28	≥ 5.3	3 16	[151]
Mouse	♂ 2-3 months; ♀ 3-5 months	UO ₂ (NO ₃) ₂ x 6H ₂ O		diet	47 weeks	NOEC	growth and mort.		< 4700	2 17	[152]
Mouse	♂ 2-3 months; ♀ 3-5 months	UCI4		diet	47 weeks	NOEC	growth		≥ 5000	2 17	[152]
Mouse	♂ 2-3 months: ♀ 3-5 months	UO ₂ F ₂		diet	47 weeks	NOEC	growth and mort.		< 2300	3 2.17	[152]
Mouse	∂ 2-3 months	U ₃ O ₈		diet	47 weeks	NOEC	growth		≥ 8500	2 17	[152]
Mouse	⊲ 2-3 months	UF4		diet	47 weeks	NOEC	arowth		≥ 23000	3 2.17	[152]
Rabbit	∂, 3200 g	UO ₂ (NO ₃) ₂ x 6H ₂ O		drinking water	91 d	NOAEL	body weight gain	≥ 323.0	≥ 28.7	2 18	[153]
Rabbit	♀, 3100 g	UO ₂ (NO ₃) ₂ x 6H ₂ O		drinking water	91 d	NOAEL	body weight gain	≥ 306.4	≥ 43.02	2 18	[153]
Rabbit	്, 3000 g	UO ₂ (NO ₃) ₂ x 6H ₂ O		drinking water	91 d	NOAFL	body weight gain	≥ 302.4	≥ 40.98	2 18	[154]
Rabbit	,	UO ₂ (NO ₃) ₂ x 6H ₂ O		diet	30 days	NOEC	mortality		95	2 17	[49]

Species	Species	Test	Purit Application	Exp.	Crit.	Endpoint	Effect conc	. Effect conc.	Effect conc.	Ri Notes	Ref
	properties	compound	y route	time			- water	 gavage/water 	- diet		
			[%]				[mg U/L]	[mg U/kg _{bw} /d]	[mg U/kg _{diet}]]	
Rabbit		$UO_2(NO_3)_2 \times 6H_2O$	diet	30 days	NOEC	growth			95	2 17	[49]
Rat	⊿ and ♀, 220-240g	$UO_2Ac_2 \times 2H_2O$	drinking water	3 months	NOAEL	reproduction		≥ 5.6		2 13,19,20	[155]
Rat	₫	$UO_2Ac_2 \times 2H_2O$	drinking water	6 months 2 weeks?	NOAEL	weight gain	75	14		3 4,6	[156]
Rat	<u>٩</u>	$UO_2Ac_2 \times 2H_2O$	drinking water	6 months	NOAEL	weight gain	75	14		3 4,6	[156]
Rat	200-250 g	$UO_2(NO_3)_2 \times 6H_2O$	drinking water	9 months	NOAEL	weight gain	19	<1.5 - 4		3 21,22	[157]
Rat	♀, 60 g	$UO_2(NO_3)_2 \times 6H_2O$	drinking water	28 d	NOAEL	body weight gain	≥ 284	≥ 40		2 23	[45]
Rat	∂ , 60 g	UO ₂ (NO ₃) ₂ x 6H ₂ O	drinking water	28 d	NOAEL	body weight gain	≥ 284	≥ 35.3		2 23	[45]
Rat	♀, 60 g	$UO_2(NO_3)_2 \times 6H_2O$	drinking water	91 d	NOAEL	body weight gain	≥ 284	≥ 53.56		2 23,24,25	[45]
Rat	∂ , 60 g	$UO_2(NO_3)_2 \times 6H_2O$	drinking water	91 d	NOAEL	body weight gain	≥ 284	≥ 36.73		2 23,24	[45]
Rat	∂ , 250 g	$UO_2(NO_3)_2 \times 6H_2O$	drinking water	9 months	NOAEL	body weight	≥ 20	≥ 4		3 4,6,22	[158]
Rat	∂ and ♀ 5.2-6.2 g	$UO_2(NO_3)_2 \ge 6H_2O$	diet	2 gen	NOAEL	reproduction		< 4		2 26,27	[52]
Rat	∂ and ♀, 220-240 g	$UO_2Ac_2 \times 2H_2O$	drinking water	3 months	NOAEL	reproduction		≥ 5.6		2* 13,19,20,2	28 [159]
Rat		$UO_2(NO_3)_2 \times 6H_2O$	drinking water	4 months	NOAEL	testes weight	<200-540	<20-54		3 29	[160]
Rat	⊲ and ♀	$UO_2(NO_3)_2 \times 6H_2O$	diet	30 days	NOEC	growth			<4740	2 17	[49]
Rat	∂ and ♀	$UO_2(NO_3)_2 \ge 6H_2O$	diet	30 days	NOEC	mortality			2370	2 17	[49]
Rat	∂ and ♀	UO ₂ F ₂	diet	30 days	NOEC	mortality			3860	3 2,17	[49]
Rat	우	UCl ₄	diet	30 days	NOEC	mortality			6260	2 17	[49]
Rat	S_	UCl ₄	diet	30 days	NOEC	mortality			3130	2 17	[49]
Rat	우	UO ₄	diet	30 days	NOEC	mortality			1970	2 17	[49]
Rat	5	UO ₄	diet	30 days	NOEC	mortality			3940	2 17	[49]
Rat	5	UO ₃	diet	30 days	NOEC	mortality			4440	2 17	[49]
Rat	o ⁷	UO ₂ Ac ₂	diet	30 days	NOEC	mortality			3310	2 17	[49]
Rat	∂ and ♀	UO ₂	diet	30 days	NOEC	mortality			176000	2 17	[49]
Rat	∂ and ♀	U ₃ O ₈	diet	30 days	NOEC	mortality			170000	2 17	[49]
Rat	∂ and ♀	UF ₄	diet	30 days	NOEC	mortality			152000	3 2,17	[49]
Rat	⊲ and ♀	UO ₂ F ₂	diet	1 y	NOEC	growth			386	3 2,17	[49]
Rat	∂ and ♀	$UO_2(NO_3)_2 \times 6H_2O$	diet	2 y	NOEC	growth			474	2 17	[49]
Rat	∂ and ♀	UF ₄	diet	2 y	NOEC	growth			15200	3 2,17	[49]
Rat	⊲ and ♀	UO ₂	diet	2 y	NOEC	growth			≥176000	2 17	[49]
Rat	∂ and ♀	$UO_2(NO_3)_2 \times 6H_2O$	diet	7 months	NOEC	reproduction			< 9480	2 17	[49]
Rat	♂ and ♀; 17 d to 6 m old	UO ₂ (NO ₃) ₂ x 6H ₂ O	diet	30 days	NOEC	mortality			< 9500	4* 3,17,22	[51]
Rat	∂ and ♀	UO ₂ (NO ₃) ₂ x 6H ₂ O	diet	1 year	NOEC	growth			474	2 3,17	[51]
Rat	and ♀	UO ₂	diet	2 years	NOEC	growth			≥176000	4* 3,17	[51]
Rat	⊲ and ♀	UF ₄	diet	2 years	NOEC	growth			15200	3 2,3,17	[51]
Rat	⊲ and ♀	UO ₂ F ₂	diet	2 years	NOEC	growth			386	3 2,3,17	[51]
Rat	⊲ and ♀	UO ₂ (NO ₃) ₂ x 6H ₂ O	diet	2 years	NOEC	growth			474	4* 3,17	[51]
Rat	∂, 70-90 g	$UO_2Ac_2 \times 2H_2O$	drinking water	4 weeks	NOAEL	general health		≥ 9.0		3 30	[161]
Rat	, adult	$UO_2Ac_2 \times 2H_2O$	drinking water	4 weeks pre mating until lactation d. 21	NOAEL	maternal body weight gain		22.5		2 13,31	[162]
Rat	, adult	$UO_2Ac_2 \times 2H_2O$	drinking water	4 weeks pre mating until lactation d. 21	NOAEL	offspring growth (body weight)		<22.5		2 13,31,32	[162]
								-		-,- ,	
Birds											
Anas rubrip	es 9 months	powdered elemental U	diet	6 weeks	NOEC	body weight			≥ 1600	3 33	[163]

Notes

- 1 Concentration in feed not reported
- 2 Co-exposure to fluoride possible
- 3 Details obtained from detailed summary
- 4 No monitoring of water intake
- 5 Dose calculated from assumed water intake 2-5 mL/d
- 6 No clear indication of actual dose
- 7 Exposure period before mating
- 8 Original ref: Llobet et al. [149]
- 9 Exposure of males 60 d and female 14d before mating
- 10 Original ref: Paternain et al. [150]
- 11 Reported as "some death attributed to treatment", no further data
- 12 Actual dose based on average daily water intake per cage over the whole exposure period
- 13 The dose was based on measured daily fluid intake and body weight and adjusted twice weekly
- 14 Only males exposed 64 days prior to mating
- 15 Observation of offspring was performed for 21 days after birth
- 16 Uranium concentration in water given only, no details on water consumption, as indication this was converted to a dose on the basis of the mean conversion rate as used by Feugier et al. [147] presuming the tested animals were of the same age
- 17 Concentration calculated from reported percentage of test compound in food
- 18 Actual dose based on average daily water intake over the whole exposure period

- 19 Only males exposed to uranium
- 20 Effect not dose related
- 21 Monitoring of water intake not specific enough to determine an exact dose and a range reported
- 22 Only one concentration tested
- 23 Endpoint based on time-weighted-average dose
- 24 Exposure declined during test due to reduced water intake
- 25 Some significant not dose related effects observed for body weight
- 26 Uranylnitrate generated by dissolving depleted uranium in concentrated nitric acid
- 27 Exposure in paper expressed as mg DU/kg/d, it is presumed that this indicates elemental depleted uranium, actual concentration in food not reported
- 28 Same study as from Albina et al. [155]
- 29 The uranium was dosed at one concentration as 0.1% uranyl nitrate solution no details on water consumption given, as indication this is converted to a dose on the basis of the same conversion as used in Bussy et al. [157] presuming the tested animals were of the same age
- 30 Unclear if the doses reported were based on actual water intake
- 31 Only females exposed, before and after mating
- 32 Offspring exposed through lactation
- 33 The form in which the uranium is dosed is insoluble and therefore irrelevant for secondary poisoning, therefore assigned with Ri 3

RIVM *Committed to* health and sustainability