

National Institute for Public Health and the Environment Report 601714004/2008 C.T.A. Moermond | J.H. Vos | E.M.J. Verbruggen

Environmental risk limits for organophosphorous pesticides

RIVM Report 601714004/2008

Environmental risk limits for organophosphorous pesticides

C.T.A. Moermond J.H. Vos E.M.J. Verbruggen

Contact: C.T.A. Moermond Expert Centre for Substances caroline.moermond@rivm.nl

This report contains an erratum after the last page d.d. 20 March 2009

This investigation has been performed by order and for the account of Directorate-General for Environmental Protection, Directorate for Soil, Water and Rural Area (BWL), within the framework of Standard setting for other relevant substances within the WFD

© RIVM 2008

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

Abstract

Environmental risk limits for organophosphorous pesticides

The RIVM has derived environmental risk limits (ERLs) for seven organophosphates in freshwater and marine waters. Organophosphates are pesticides which are used in agriculture and horticulture. This group of substances contains azinphos-ethyl, azinphos-methyl, coumaphos, heptenophos, mevinphos, tolclofos-methyl and triazophos. They belong to the category 'other relevant substances' for the Water Framework Directive.

For deriving the environmental risk limits, RIVM used the most up-to-date ecotoxicological data in combination with the most recent methodology, as required by the European Water Framework Directive. No risk limits were derived for the sediment compartment, because sorption to sediment is assumed to be negligible.

Environmental risk limits, as derived in this report, are scientifically derived values, based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs). ERLs are thus preliminary values that do not have any official status. Four different risk limits are distinguished: negligible concentrations (NC), the concentration at which no harmful effects are to be expected (maximum permissible concentration, MPC), the maximum acceptable concentration for ecosystems – specifically in terms of short-term exposure (MAC_{eco}), the concentration at which possible serious effects are to be expected (serious risk concentrations, SRC_{eco}).

Key words:

environmental risk limits, maximum permissible concentration, maximum acceptable concentration, serious risk concentration, organophosphorous pesticides

Rapport in het kort

Milieurisicogrenzen voor organofosfaten

Het RIVM heeft milieurisicogrenzen afgeleid voor zeven organofosfaten in zoet en zout water. Organofosfaten zijn bestrijdingsmiddelen die in de land- en tuinbouw worden gebruikt. De groep stoffen omvat azinphos-ethyl, azinphos-methyl, coumaphos, heptenophos, mevinphos, tolelofos-methyl en triazophos. De stoffen vallen onder de categorie 'overige relevante stoffen' voor de Kaderrichtlijn Water.

Voor de afleiding van de milieurisicogrenzen heeft het RIVM de actuele toxicologische gegevens gebruikt, gecombineerd met de meest recente methodiek. Deze methodiek is voorgeschreven door de Europese Kaderrichtlijn Water. Voor het sediment, de waterbodem, zijn geen milieurisicogrenzen afgeleid. Dat komt omdat de mate waarin deze organofosfaten zich aan sediment binden, verwaarloosbaar wordt geacht.

Milieurisicogrenzen, zoals afgeleid in dit rapport, zijn wetenschappelijk afgeleide waardes, gebaseerd op (eco)toxicologische, milieuchemische en physisch-chemische data. Milieurisicogrenzen dienen als advieswaardes voor de Nederlandse interdepartementale Stuurgroep Stoffen, die de uiteindelijke milieukwaliteitsnormen vaststelt. Milieurisicogrenzen zijn dus voorlopige waardes zonder enige officiële status. Er bestaan vier verschillende niveaus voor milieurisicogrenzen: een verwaarloosbaar risiconiveau (VR), een niveau waarbij geen schadelijke effecten zijn te verwachten (MTR), het maximaal aanvaardbare niveau voor ecosystemen, specifiek voor kortdurende blootstelling (MAC_{eco}) en een niveau waarbij mogelijk ernstige effecten voor ecosystemen zijn te verwachten (ER_{eco}).

Trefwoorden:

milieurisicogrenzen, maximaal toelaatbaar risiconiveau, maximaal acceptabele concentratie, ernstig risiconiveau, organofosfaten

Preface

The goal of this report is to derive risk limits that protect both man and the environment. This is done in accordance with the methodology of the Water Framewerk Directive (WFD) that is incorporated in the present INS methodology, following the Guidance for the derivation of environmental risk limits within the INS framework (Van Vlaardingen and Verbruggen, 2007).

The results presented in this report have been discussed by the members of the scientific advisory group for the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (WK-INS). This advisory group provides a non binding scientific advice on the final draft of a report. It should be noted that the Environmental Risk Limits (ERLs) in this report are scientifically derived values, based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs). ERLs should thus be considered as preliminary values that do not have any official status.

Acknowledgements

Thanks are due to J.M.C. Appelman, M.Sc., who was contact person at the Ministry of Housing, Spatial Planning and the Environment (VROM-DGM/BWL) and to Dr. M.P.M. Janssen who is program coordinator for the derivation of ERLs within the RIVM. We also thank Peter van Vlaardingen for his contributions to this report.

The results of the present report have been discussed in the scientific advisory group INS (WK INS). The members of this group are acknowledged for their contribution.

Contents

List of tables and figures 13					
List of abbreviations 15					
Samenvattin	g	17			
Summary		19			
1 1.1 1.2 1.3	Introduction Project framework Selection of substances Guidance followed for this project	21 21 21 22			
2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.3 2.2.4	Methods Data collection Derivation of environmental risk limits for water and sediment Read Across among compounds Combination of freshwater and marine data Drinking water MAC _{eco,marine}	 23 25 25 25 25 26 			
3 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2 1	Derivation of environmental risk limits Azinphos-ethyl Substance identification, physicochemical properties, fate and human toxicology Trigger values Toxicity data and derivation of ERLs for water Azinphos-methyl Substance identification, physicochemical properties, fate and human toxicology	27 27 27 29 30 33 33			
3.2.2 3.2.3 3.3 3.3.1 3.3.2 2.2.3	Trigger values Toxicity data and derivation of ERLs for water Coumaphos Substance identification, physicochemical properties, fate and human toxicology Trigger values Toxicity data and derivation of ERLs for water	36 36 45 45 45 47			
3.4.1 3.4.2 3.4.3 3.5	Heptenophos Substance identification, physicochemical properties, fate and human toxicology Trigger values Toxicity data and derivation of ERLs for water Mevinphos	48 51 51 53 54 57			
3.5.1 3.5.2 3.5.3 3.6 3.6.1	Substance identification, physicochemical properties, fate and human toxicology Trigger values Toxicity data and derivation of ERLs for water Tolclofos-methyl Substance identification, physicochemical properties, fate and human toxicology	57 59 60 63 63			
3.6.2 3.6.3 3.7 3.7.1 3.7.2	Trigger values Toxicity data and derivation of ERLs for water Triazophos Substance identification, physicochemical properties, fate and human toxicology Trigger values	65 66 69 69 71			

3.7.3	Toxicity data and derivation of ERLs for water	72
4	Conclusions	75
Referenc	es	77
Appendi	x 1. Information on bioconcentration	79
Appendi	x 2. Detailed aquatic toxicity data	84
Appendi	x 3. Description of mesocosm studies	120
Appendi	x 4. Detailed bird and mammal toxicity data	136
Appendi	x 5. References used in the appendices	141

List of tables and figures

Tables

Tabel 1. Afgeleide MTR, MAC _{eco} , VR en ER _{eco} waarden (in μ g/L).	17
Table 2. Derived MPC, NC, MAC _{eco} , and SRC _{eco} values (in μ g/L).	19
Table 3. Selected compounds.	22
Table 4. Identification of azinphos-ethyl.	27
Table 5. Physicochemical properties of azinphos-ethyl.	28
Table 6. Selected environmental properties of azinphos-ethyl.	28
Table 7. Overview of bioaccumulation data for azinphos-ethyl.	29
Table 8. Azinphos-ethyl: collected properties for comparison to MPC triggers.	29
Table 9. Azinphos-ethyl: selected aquatic freshwater data for ERL derivation.	30
Table 10. Azinphos-ethyl: selected aquatic marine data for ERL derivation.	30
Table 11. Azinphos-ethyl: selected bird and mammal data for ERL derivation.	31
Table 12. Identification of azinphos-methyl.	33
Table 13. Physicochemical properties of azinphos-methyl.	34
Table 14. Selected environmental properties of azinphos-methyl.	34
Table 15. Overview of bioaccumulation data for azinphos-methyl.	35
Table 16. Azinphos-methyl: collected properties for comparison to MPC triggers.	36
Table 17. Azinphos-methyl: selected aquatic freshwater data for ERL derivation.	37
Table 18. Azinphos-methyl: selected aquatic marine data for ERL derivation.	39
Table 19. Identification of coumaphos.	45
Table 20. Physicochemical properties of coumaphos.	46
Table 21. Selected environmental properties of coumaphos.	46
Table 22. Overview of bioaccumulation data for coumaphos.	47
Table 23. Coumaphos: collected properties for comparison to MPC triggers.	47
Table 24. Coumaphos: selected aquatic freshwater data for ERL derivation.	48
Table 25. Coumaphos: selected aquatic marine data for ERL derivation.	48
Table 26. Coumaphos: selected bird and mammal data for ERL derivation.	49
Table 27. Identification of heptenophos.	51
Table 28. Physicochemical properties of heptenophos.	52
Table 29. Selected environmental properties of heptenophos.	52
Table 30. Overview of bioaccumulation data for heptenophos.	52
Table 31. Heptenophos: collected properties for comparison to MPC triggers.	53
Table 32. Heptenophos: selected aquatic freshwater data for ERL derivation.	54
Table 33. Identification of mevinphos.	57
Table 34. Physicochemical properties of mevinphos.	58
Table 35. Selected environmental properties of mevinphos.	58
Table 36. Overview of bioaccumulation data for mevinphos.	59
Table 37. Mevinphos: collected properties for comparison to MPC triggers.	59
Table 38. Mevinphos: selected aquatic freshwater data for ERL derivation.	60
Table 39. Mevinphos: selected aquatic marine data for ERL derivation.	60
Table 40. Identification of tolclofos-methyl.	63
Table 41. Physicochemical properties of tolclofos-methyl.	64
Table 42. Selected environmental properties of tolclofos-methyl.	64
Table 43. Overview of bioaccumulation data for tolclofos-methyl.	65
Table 44. Tolclofos-methyl: collected properties for comparison to MPC triggers.	65
Table 45. Tolclofos-methyl: selected aquatic freshwater data for ERL derivation.	66

Table 46. Tolclofos-methyl: selected bird and mammal data for ERL derivation.	67
Table 47. Identification of triazophos.	69
Table 48. Physicochemical properties of triazophos.	70
Table 49. Selected environmental properties of triazophos.	70
Table 50. Overview of bioaccumulation data for triazophos.	71
Table 51. Triazophos: collected properties for comparison to MPC triggers.	71
Table 52. Triazophos: selected aquatic freshwater data for ERL derivation.	72
Table 53. Triazophos: selected bird and mammal data for ERL derivation.	73
Table 54. Derived MPC, NC, MAC, and SRC values (in µg/L).	75

Figures

Figure 1. Structural formula of azinphos-ethyl.	27
Figure 2. Structural formula of azinphos-methyl.	33
Figure 3 SSD graph for chronic toxicity data of azinphos-methyl	41
Figure 4. SSD for azinphos-methyl, using acute toxicity data for all species	43
Figure 5. SSD for azinphos-methyl, using acute toxicity data for sensitive species	43
Figure 6. Structural formula of coumaphos.	45
Figure 7. Structural formula of heptenophos.	51
Figure 8. Structural formula of mevinphos.	57
Figure 9. Structural formula of tolclofos-methyl.	63
Figure 10. Structural formula of triazophos.	69

List of abbreviations

ADI	Acceptable Daily Intake
ERL	Environmental Risk Limit
INS	International and National Environmental Quality Standards for Substances in the
MAC	Neulerlands
MAC _{eco}	Maximum Acceptable Concentration for ecosystems
MAC _{eco,water}	Maximum Acceptable Concentration for freshwater ecosystems
MPC	Maximum Permissible Concentration
MPC _{dw,water}	Maximum Permissible Concentration in freshwater based on abstraction of drinking water
MPC _{eco} marine	Maximum Permissible Concentration in marine water based on ecotoxicological data
MPC _{eco water}	Maximum Permissible Concentration in freshwater based on ecotoxicological data
MPC _{bhfood} marine	Maximum Permissible Concentration in marine water based on consumption of fish
- infood,marine	and shellfish by humans
MPC _{hhfood water}	Maximum Permissible Concentration in freshwater based on consumption of fish and
	shellfish by humans
MPC _{marine}	Maximum Permissible Concentration in marine water (transitional, coastal, and
	territiorial waters)
MPC _{sp,marine}	Maximum Permissible Concentration in marine water based on secondary poisoning
MPC _{sp,water}	Maximum Permissible Concentration in freshwater based on secondary poisoning
MPC _{water}	Maximum Permissible Concentration in freshwater
NC	Negligible Concentration
NC _{marine}	Negligible Concentration in marine water
NC _{water}	Negligible Concentration in freshwater
SRC _{eco}	Serious Risk Concentration for ecosystems
SRC _{eco,marine}	Serious Risk Concentration for marine ecosystems
SRC _{eco,water}	Serious risk concentration for freshwater ecosystems
TDI	Tolerable Daily Intake
TL_{hh}	Treshold Level for human health
WFD	Water Framework Directive (2000/60/EC)

Samenvatting

Milieurisicogrenzen worden afgeleid met gebruik van ecotoxicologische, fysisch-chemische en humaan-toxicologische gegevens en representeren de milieuconcentraties van stoffen waarbij verschillende niveaus van bescherming voor mens en milieu worden gegeven. De milieurisicogrenzen zijn wetenschappelijk afgeleide waardes, die dienen als basis voor de Stuurgroep Stoffen, die de milieukwaliteitsnormen vaststelt op basis van de milieurisicogrenzen. Milieurisicogrenzen zijn dus voorlopige waardes zonder officiële status. In dit rapport zijn de milieurisicogrenzen verwaarloosbaar risiconiveau (VR), maximaal toelaatbaar risiconiveau (MTR), maximaal acceptabele concentratie voor ecosystemen (MAC_{eco}) en ernstig risiconiveau voor ecosystemen (ER_{eco}) afgeleid voor zeven organofosfaten in water. Voor het sediment zijn geen risicogrenzen afgeleid omdat de triggerwaarde voor de K_{OC} niet wordt overschreden.

Voor het afleiden van het MTR en de MAC_{eco} voor water is gebruikgemaakt van de methodiek in overeenstemming met de Kaderrichtlijn Water (Lepper, 2005). Deze methodiek is gebaseerd op het EU richtsnoer voor de risicobeoordeling van nieuwe stoffen, bestaande stoffen en biociden (European Commission (Joint Research Centre), 2003). Voor ER_{eco} en VR is de handleiding voor het project (Inter)Nationale Normen Stoffen (INS) gebruikt (Van Vlaardingen and Verbruggen, 2007). Een overzicht van de afgeleide milieurisicogrenzen wordt in Tabel 1 gegeven.

Milieu- risicogrens ^a	Azinphos- ethyl	Azinphos- methyl	Coumaphos	Heptenophos	Mevinphos	Tolclofos- methyl	Triazophos
Oude MTR _{water}	$1,1 \times 10^{-2}$	$1,2 \times 10^{-2}$	7×10^{-4}	$2,0 \times 10^{-2}$	2×10^{-3}	0,790	$3,2 \times 10^{-2}$
MTR _{eco,water}	$6,5 \times 10^{-3}$	$2,0 \times 10^{-3}$	$3,4 \times 10^{-3}$	$2,0 \times 10^{-3}$	$1,7 \times 10^{-4}$	1,2	$1,0 \times 10^{-3}$
MTR _{dw,water}	0,1	0.1	0,1	0,1	0,1	0,1	0,1
MTR _{sp,water}	0,51	n.a. ²	$7,5 \times 10^{-2}$	n.a. ²	n.a. ²	3,4	0,48
MTR _{hh food,water}	n.a. ^b	n.a. ²	340	n.a. ²	n.a. ²	$n.a.^2$	293
MTR _{water}	$6,5 \times 10^{-3}$	$2,0 \times 10^{-3}$	$3,4 \times 10^{-3}$	$2,0 \times 10^{-3}$	$1,7 \times 10^{-4}$	1,2 ^c	$1,0 \times 10^{-3}$
MTR _{eco,marien}	$1,3 \times 10^{-3}$	$4,0 \times 10^{-4}$	$6,8 \times 10^{-4}$	$2,0 \times 10^{-4}$	$1,7 \times 10^{-5}$	n.a.	$1,0 \times 10^{-4}$
MTR _{sp,marien}	0,51	n.a. ²	$7,5 \times 10^{-2}$	n.a. ²	n.a.	1,7	0,48
MTR _{hhfood,marien}	n.a. ^b	n.a. ²	340	$n.a.^2$	n.a.	n.a. ²	293
MTR _{marien}	$1,3 \times 10^{-3}$	$4,0 \times 10^{-4}$	$6,8 \times 10^{-4}$	$2,0 \times 10^{-4}$	$1,7 \times 10^{-5}$	n.a. ²	$1,0 \times 10^{-4}$
VR _{water}	$6,5 \times 10^{-5}$	$2,0 \times 10^{-5}$	$3,4 \times 10^{-5}$	$2,0 \times 10^{-5}$	$1,7 \times 10^{-6}$	$1,2 \times 10^{-2c}$	$1,0 \times 10^{-5}$
VR _{marien}	$1,3 \times 10^{-5}$	$4,0 \times 10^{-6}$	$6,8 \times 10^{-6}$	$2,0 \times 10^{-6}$	$1,7 \times 10^{-7}$	$n.a.^2$	$1,0 \times 10^{-6}$
MAC _{eco,water}	$1,1 \times 10^{-2}$	$1,4 \times 10^{-2}$	$3,4 \times 10^{-3}$	$2,0 \times 10^{-2}$	$1,7 \times 10^{-2}$	1,2 ^c	$2,0 \times 10^{-2}$
MAC _{eco,marine}	$1,1 \times 10^{-3c}$	$2,8 \times 10^{-3c}$	$6,8 \times 10^{-4c}$	$2,0 \times 10^{-3c}$	$1,7 \times 10^{-3c}$	$n.a.^2$	$2,0 \times 10^{-3c}$
ER _{eco,water}	1,1	4,8	4,5	172	4,6	40	109
ER _{eco,marien}	1,1	4,8	4,5	172	4,6	n.a.	109

Tabel 1. Afgeleide	MTR, MAC _{eco} ,	VR en ER _{eco}	waarden (i	n μg/L).
--------------------	---------------------------	-------------------------	------------	----------

^a subscript water = zoetwater; subscript marien = mariene wateren; $MTR_{eco} = MTR$ gebaseerd op ecotoxicologische data; $MTR_{dw} = MTR$ gebaseerd op humane consumptie van drinkwater; $MTR_{sp} = MTR$ gebaseerd op doorvergiftiging;

 $MTR_{hhfood} = MTR$ gebaseerd op de consumptie van vis door mensen

^bn.a. = niet afgeleid wegens een gebrek aan data

^c voorlopige waarde, voor verdere informatie zie de methoden-paragraaf

Summary

Environmental risk limits (ERLs) are derived using ecotoxicological, physicochemical, and human toxicological data. They represent environmental concentrations of a substance offering different levels of protection to man and ecosystems. It should be noted that the ERLs are scientifically derived values. They serve as advisory values for the Dutch Steering committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs) from these ERLs. ERLs should thus be considered as preliminary values that do not have any official status.

In this report, the risk limits negligible concentration (NC), maximum permissible concentration (MPC), maximum acceptable concentration for ecosystems (MAC_{eco}), and serious risk concentration for ecosystems (SRC_{eco}) were derived for seven organophosphorous pesticides in water and sediment. No risk limits were derived for the sediment compartment because log K_{OC} was below the trigger value. For the derivation of the MPC and MAC_{eco} for water, the methodology used is in accordance with the Water Framework Directive (Lepper, 2005). This methodology is based on the Technical Guidance Document on risk assessment for new and existing substances and biocides (European Commission (Joint Research Centre), 2003). For the NC and the SRC_{eco} , the guidance developed for the project 'International and National Environmental Quality Standards for Substances in the Netherlands' was used (Van Vlaardingen and Verbruggen, 2007). An overview of the derived environmental risk limits is given in Table 2.

Environmental risk limit ^a	Azinphos- ethyl	Azinphos- methyl	Coumaphos	Heptenophos	Mevinphos	Tolclofos- methyl	Triazophos
Old MPC _{water}	1.1×10^{-2}	1.2×10^{-2}	7×10^{-4}	0.02	2×10^{-3}	0.790	0.032
MPC _{eco,water}	6.5×10^{-3}	2.0×10^{-3}	3.4×10^{-3}	2.0×10^{-3}	1.7×10^{-4}	1.2	1.0×10^{-3}
MPC _{dw,water}	0.1	0.1	0.1	0.1	0.1	0.1	0.1
MPC _{sp,water}	0.51	n.d. ^b	7.5×10^{-2}	n.d. ^b	n.d. ^b	3.4	0.48
MPC _{hh food,water}	n.d. ^b	n.d. ^b	340	n.d. ^b	n.d. ^b	n.d. ^b	293
MPC _{water}	6.5×10^{-3}	2.0×10^{-3}	3.4×10^{-3}	2.0×10^{-3}	1.7×10^{-4}	1.2 ^c	1.0×10^{-3}
MPC _{eco,marine}	1.3×10^{-3}	4.0×10^{-4}	6.8×10^{-4}	2.0×10^{-4}	1.7×10^{-5}	n.d. ^b	1.0×10^{-4}
MPC _{sp,marine}	0.51	n.d. ^b	7.5×10^{-2}	n.d. ^b	n.d. ^b	1.7	0.48
MPC _{hh} food,marine	n.d. ^b	n.d. ^b	340	n.d. ^b	n.d. ^b	n.d. ^b	293
MPC _{marine}	1.3×10^{-3}	4.0×10^{-4}	6.8×10^{-4}	2.0×10^{-4}	1.7×10^{-5}	n.d. ^b	1.0×10^{-4}
NC _{water}	6.5×10^{-5}	2.0×10^{-5}	3.4×10^{-5}	2.0×10^{-5}	1.7×10^{-6}	1.1×10^{-2c}	1.0×10^{-5}
NC _{marine}	1.3×10^{-5}	4.0×10^{-6}	6.8×10^{-6}	2.0×10^{-6}	1.7×10^{-7}	n.d. ^b	1.0×10^{-6}
MAC _{eco,water}	1.1×10^{-2}	1.4×10^{-2}	3.4×10^{-3}	2.0×10^{-2}	1.7×10^{-2}	1.2 ^c	2.0×10^{-2}
MAC _{eco,marine}	1.1×10^{-3c}	2.8×10^{-3c}	6.8×10^{-4c}	2.0×10^{-3c}	1.7×10^{-3c}	n.d. ^b	2.0×10^{-3c}
SRC _{eco,water}	1.1	4.8	4.5	172	4.6	40	109
SRC _{eco,marine}	1.1	4.8	4.5	172	4.6	n.d.	109

Table 2. Derived MPC, NC, MAC_{eco}, and SRC_{eco} values (in µg/L).

^a subscript water = freshwater; subscript marine = marine water; $MPC_{eco} = MPC$ based on ecotoxicological data; $MPC_{dw} = MPC$ based on human consumption of drinking water; $MPC_{sp} = MPC$ based on secondary poisoning; $MPC_{hhfood} = MPC$ based on human consumption of fish.

^b n.d. = not derived due to a lack of data.

^c provisional value, for further information see the methods paragraph.

1 Introduction

1.1 Project framework

In this report, environmental risk limits (ERLs) for surface water (freshwater and marine) are derived for seven organophosphorous pesticides (azinphos-ethyl, azinphos-methyl, coumaphos, heptenophos, mevinphos, tolclofos-methyl, triazophos). The following ERLs are considered:

- negligible concentration (NC) concentration at which effects to ecosystems are expected to be negligible and functional properties of ecosystems must be safeguarded fully. It defines a safety margin which should exclude combination toxicity. The NC is derived by dividing the MPC (see next bullet) by a factor of 100.
- maximum permissible concentration (MPC) concentration in an environmental compartment at which:
 - 1 no effect to be rated as negative is to be expected for ecosystems;
 - 2a no effect to be rated as negative is to be expected for humans (for non-carcinogenic substances);
 - 2b for humans no more than a probability of 10⁻⁶ per year of death can be calculated (for carcinogenic substances). Within the scope of the Water Framework Directive, a probability of 10⁻⁶ on a life-time basis is used.

Within the scope of the Water Framework Directive the MPC is specifically referring to long-term exposure.

- maximum acceptable concentration (MAC_{eco}) concentration protecting aquatic ecosystems for effects due to short-term exposure or concentration peaks.
- serious risk concentration (SRC_{eco}) concentration at which possibly serious ecotoxicological effects are to be expected.

These ERLs serve as advisory values that are used by the Steering Committee for Substances to set environmental quality standards (EQS) for various policy purposes. EQSs are all legally and non legally binding standards that are used in Dutch environmental policy.

1.2 Selection of substances

ERLs are derived for seven organophosphorous pesticides (Table 3), which are selected by the Netherlands in the scope of the Water Framework Directive (WFD; 2000/60/EC).

Compound	CAS number
Azinphos-ethyl	2642-71-9
Azinphos-methyl	86-50-0
Coumaphos	56-72-4
Heptenophos	23560-59-0
Mevinphos	26718-65-0
Tolclofos-methyl	57018-04-9
Triazophos	24017-47-8

1.3 Guidance followed for this project

In this report ERLs are derived following the methodology of the project 'International and national environmental quality standards for substances in the Netherlands' (INS) (Van Vlaardingen and Verbruggen, 2007). This updated INS guidance is in accordance with the guidance by Lepper (2005) which forms part of the Priority Substances Daughter Directive (2006/0129 (COD)) amending the WFD (2000/60/EC). The WFD guidance applies to the derivation of MPCs for water and sediment. ERL derivations for water and sediment are performed for both the freshwater and marine compartment. The WFD guidance introduces a new ERL, which is the Maximum Acceptable Concentration (MAC_{eco}), a concentration that protects aquatic ecosystems from adverse effects caused by short-term exposure or concentration peaks. Further, two MPC values are considered for the water compartment that are based on a human toxicological risk limit (TL_{bb}), which might be an ADI or TDI (Acceptable or Tolerable Daily Intake, respectively), etc. Discerned are (1) the MPC_{hh food,water}, which is the concentration in water that should protect humans against adverse effects from the substance via fish and shellfish consumption; (2) the MPC_{dw,water}, which is the concentration in water that should protect humans against adverse effects of the substance by consumption of drinking water. Note that each of these two MPCs is allowed to contribute only 10% to the TL_{hh}. Two other types of MPCs are derived for the water compartment, based on ecotoxicological data. These are (1) the MPC_{eco water} and MPC_{eco,marine}, which are based on direct aquatic ecotoxicological data and (2) the MPC_{sp,water} and MPC_{sp marine}, the MPC accounting for secondary poisoning, which is derived in case secondary poisoning in the environment is thought to be of concern. It is important to note that MPC derivation integrates both ecotoxicological data and a human toxicological threshold value. The height of this final 'environmental risk limit' is determined by the lowest of these protection objectives.

The WFD guidance departs from the viewpoint that laboratory toxicity tests contain suspended matter in such concentrations, that results based on laboratory tests are comparable to outdoor surface waters. In other words: each outcome of an ERL derivation for water will now result in a <u>total</u> concentration. A recalculation from a dissolved to a total concentration is thus no longer made within INS framework. This differs from the former Dutch approach, in which each outcome of a laboratory test was considered to represent a <u>dissolved</u> concentration. This concentration could then be recalculated to a total concentration using standard characteristics for surface water and suspended matter.

2 Methods

2.1 Data collection

An on-line literature search was performed on TOXLINE (literature from 1985 to 2001) and Current contents (literature from 1997 to 2006). The search resulted in hundreds of references. In addition to this, all references in the RIVM e-tox base and EPA's ECOTOX database were evaluated. Using the internet, public versions of pesticide evaluation reports were obtained (if present) for registration procedures in the United States, Canada, Europe and individual European countries. Toxicity data described in these documents (mainly mammalian and bird toxicity) were also used. All toxicity data are reported in the Appendices.

The validities (or reliabilities) of the studies are assigned using the criteria of Klimisch et al. (1997): *Reliable without restriction*

This includes studies or data from the literature or reports which were carried out or generated according to generally valid and/or internationally accepted testing guidelines (preferably performed according to GLP) or in which the test parameters documented are based on a specific (national) testing guideline (preferably performed according to GLP) or in which all parameters described are closely related/comparable to a guideline method.

2. Reliable with restrictions

This includes studies or data from the literature, reports (mostly not performed according to GLP), in which the test parameters documented do not totally comply with the specific testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.

3. Not reliable

This includes studies or data from the literature/reports in which there are interferences between the measuring system and the test substance or in which organisms/test systems were used which are not relevant in relation to the exposure (e.g., unphysiologic pathways of application) or which were carried out or generated according to a method which is not acceptable, the documentation of which is not sufficient for an assessment and which is not convincing for an expert judgment.

4. Not assignable

This includes studies or data from the literature, which do not give sufficient experimental details and which are only listed in short abstracts or secondary literature (books, reviews, etc.).'

A validity score of 1 or 2, however, does not automatically mean that a study is selected for the derivation. The relevance of the study for derivation is not included in the validity score; a study that is not relevant will not be used, even when its validity/reliability is very good. As an example: when enough studies are available, only those with the most appropriate exposure times will be selected.

Within the basic rules of these criteria, specific choices have been made (see also Van Vlaardingen and Verbruggen, 2007):

- When a compound has not been measured, it will never get a validity of 1, but always 2, 3, or 4 depending on other criteria. A validity of 1 will only be awarded when the compound is measured and the value is based on measured data.
- When a study is performed without flaws, but not all details (e.g., pH, hardness) are specified, it will be attributed a validity of 2. A validity of 1 will only be awarded when a study is performed according to OECD guidelines, and/or raw data are also presented, or all study details are very well described without open ends. GLP is <u>not</u> a guarantee for a well-designed and performed study.
- Validities attributed in other studies are not adopted 'as is'; only when enough information is available to make our own judgement. An exception are validities attributed by the DAR, these are automatically adopted unless study details give reason to change the validity.
- When a TLm is reported instead of an LC50, the study will not be given a validity of 1 due to the difference in calculation methods.
- An additional validity score of 2* is used, when data are used that are presented in reliable sources, but which have not been explicitly validated by us and for which sometimes not all information is known. These reliable sources include reports on ERL derivation, and toxicity handbooks or articles by Mayer and Ellersieck (1986) and Mayer (1986), etc.
- An additional validity score of 4* is used, when it can be assumed with high probability that the same data is published by different authors. Then only one of those data will be given a 'real' validity and the rest will be given a validity of 4*.
- The use of a commercial formulation is not a ground to reject a study (validity 3), unless it is known that other compounds in the formulation will show toxic effects. When a commercial formulation is used, concentrations are measured and all criteria for a validity of 1 are met, then the use of a commercial formulation is no reason to lower this validity. Studies with a formulation will be rewarded a validity of 2 if the study is performed well and results are expressed in concentration of the active ingredient, but may not be measured. When it can be assumed with high probability that the result is expressed in active ingredient but this is not explicitly mentioned (for instance, when only the name of the chemical is used and not of the commercial formulation) a maximum validity of 2 is still possible, because if it would be expressed in terms of the commercial formulation, results in a.i. could only be lower.
- When a compound is only referred to by its commercial name, and nothing is mentioned on the percentage of active ingredient and/or water concentrations are not measured, then a validity of 4 will be given.
- When the endpoint of an EC50 study is not specified, the validity will automatically be 4. Except for the estuarine data by Mayer (1986), who gave a general specification of all EC50s in his handbook as being 'growth, immobility or some other identifiable endpoint'.

Wherever a study does not explicitly follow one of these rules, an explanatory note on the attribution of the validity criteria is added in the toxicity table.

After data collection and validation, toxicity data are combined into an aggregated data table with one effect value per species. When for a species several effect data are available, where possible the geometric mean of multiple values for the same endpoint is calculated. Subsequently, when several

endpoints are available for one species, the lowest of these endpoints (per species) is reported in the aggregated data table.

2.2 Derivation of environmental risk limits for water and sediment

The methodology for data selection and ERL derivation is described in Van Vlaardingen and Verbruggen (2007) and follows Lepper (2005). Specific details will be discussed below.

2.2.1 Read Across among compounds

Because six of the seven organophosphorous pesticides (azinphos-ethyl, azinphos-methyl, coumaphos, heptenofos, mevinphos and triazophos) in this report are very similar, it is decided to use read across when circumstantial evidence is needed to be able to derive an environmental risk limit. For tolclofosmethyl, a fungicide, this is not the case.

2.2.2 Combination of freshwater and marine data

For pesticides, MPCs for freshwater and other surface waters (marine and estuarine waters) should be derived separately. According to Lepper (2005): 'Freshwater effects data of plant protection products (PPP) shall normally not be used in place of saltwater data, because within trophic levels differences larger than a factor of 10 were found for several PPP. This means that for PPP the derivation of quality standards addressing the protection of water and sediment in transitional, coastal and territorial waters is not possible if there are no effects data for marine organisms available or if it is not possible to determine otherwise with high probability that marine organisms are not more sensitive than freshwater biota (consideration of the mode of action may be helpful in this assessment).'

However, for the group of organophosphorous pesticides for which environmental risk limits are derived in this report, a difference between fresh water data and marine data is not present. The mode of action of the compounds is inhibition of acetyl cholinesterase activity, and for compounds with a higher log K_{OW} narcosis may also play a role. It is not expected that these modes of action are different in marine water (Maltby et al., 2005). Besides this, the most sensitive species to this type of compounds (crustaceans) are well represented in the dataset. Insects, which are also sensitive, are not very abundant in marine waters. The availability of the compounds can be assumed to be equal between freshwater and marine waters. Thus, it was decided to use read across and combine the datasets for marine and freshwater toxicity data. Please note that although the dataset is combined, the actual ERL derivation is still performed separately for freshwater and marine water.

For tolclofos-methyl an exception is made. Since this compound is a fungicide and has a different mode of action, read across from the other compounds is not possible and thus fresh water and marine toxicity data can not be combined.

2.2.3 Drinking water

The INS-Guidance includes the MPC for surface waters intended for the abstraction of drinking water (MPC_{dw, water}) as one of the MPCs from which the lowest value should be selected as the general MPC_{water} (see INS-Guidance, section 3.1.6 and 3.1.7). In the proposal for the daughter directive Priority Substances, however, the EC based the derivation of the AA-EQS (= MPC) on direct exposure, secondary poisoning, and human exposure due to the consumption of fish. Drinking water was not included in the proposal and is thus not guiding for the general MPC value. The exact way of

implementation of the MPC_{dw, water} in the Netherlands is at present under discussion within the framework of the 'AMvB Waterkwaliteitseisen en Monitoring Water'. No policy decision has been taken yet, and the MPC_{dw, water} is therefore presented as a separate value in this report. The MPC_{water} is thus derived considering the individual MPCs based on direct exposure (MPC_{eco, water}), secondary poisoning (MPC_{sp, water}) or human consumption of fishery products (MPC_{hh food, water}); the need to derive the latter two depends on the characteristics of the compound.

Related to this, is the inclusion of water treatment for the derivation of the MPC_{dw, water}. According to the INS-Guidance (see section 3.1.7), a substance specific removal efficiency related to simple water treatment should be derived in case the MPC_{dw, water} is lower than the other MPCs. For pesticides, there is no agreement as yet on how the removal fraction should be calculated, and water treatment is therefore not taken into account. In case no A1 value is set in Directive 75/440/EEC, the MPC_{dw, water} is set to the general Drinking Water Standard of 0.1 μ g/L for organic pesticides.

2.2.4 MAC_{eco,marine}

In this report, the MAC_{eco,marine} value is based on the MAC_{eco,water} value when acute toxicity data for at least two specific marine taxa are available, using an additional assessment factor (analogous to the derivation of the MPC according to Van Vlaardingen and Verbruggen, 2007) of 5 when acute toxicity data for only one specific marine taxon is available and an additional assessment factor of 10 when no acute toxicity data is available for specific marine taxa. It has to be noted that this procedure is currently not agreed upon. Therefore, the MAC_{eco,marine} value needs to be re-evaluated once an agreed procedure is available.

3 Derivation of environmental risk limits

3.1 Azinphos-ethyl

- **3.1.1** Substance identification, physicochemical properties, fate and human toxicology
- 3.1.1.1 Identity

Figure 1. Structural formula of azinphos-ethyl.

Parameter	Name or number
Chemical name	O,O-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl]
	phosphorodithioate or S-(3,4-dihydro-4-oxobenzo[d]-[1,2,3]-triazin-
	3-ylmethyl) O,O-diethyl phosphorodithioate (IUPAC)
Common/trivial/other name	Azinphos-ethyl, Triazotion, Azinugec E, Batazina, Azin, Crysthion,
	Ethyl Guthion, Gusathion A, Cotnion-ethyl
CAS number	2642-71-9
EC number	220-147-6
SMILES code	S=P(OCC)(OCC)SCN1N=Nc2cccc2C1=O

Table 4. Identification of azinphos-ethyl.

3.1.1.2 Physicochemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	345.4		
Water solubility	[mg/L]	4-5	20 °C	Tomlin, 2002
		6.7	10 °C	Bowman and Sans, 1985
		10.5	20 °C	Bowman and Sans, 1985
pK _a	[-]	n.a.		
$\log K_{\rm ow}$	[-]	3.18		Tomlin, 2002
		3.4		Deneer et al., 1999
		3.51	EpiWin	US EPA, 2007
		3.43	ClogP	BioByte, 2004
		3.4	MlogP	BioByte, 2004
$\log K_{\rm oc}$	[-]	2.4	EpiWin	US EPA, 2007
		2.69	Calculated using	According to Sabljic et al.,
			$\log K_{\rm ow} = 3.4$	1995
Vapour pressure	[Pa]	3.2×10^{-4}	20 °C	Tomlin, 2002
Melting point	[°C]	50		Tomlin, 2002
Boiling point	[°C]	147	1.3 Pa	Tomlin, 2002
Henry's law constant	$[Pa.m^3.mol^{-1}]$	3.1×10^{-6}		Tomlin, 2002

n.a. = not applicable.

3.1.1.3 Behaviour in the environment

Table 6. Selected environmental properties of azinphos-ethyl.
· · · · · · · · · · · · · · · · · · ·

Parameter	Unit	Value	Remark	Reference
Hydrolysis	DT50 [d]	0.17	рН 4; 22 °С	Tomlin, 2002
half-life		270	рН 7; 22 °С	Tomlin, 2002
		11	рН 9; 22 °С	Tomlin, 2002
Photolysis	DT50 [d]			
half-life				
Degradability	DT50 [d]	Several weeks		Tomlin, 2002
		Not ready biodegradable	EpiWin	US EPA, 2007
		9-204	Different types of	Lartiges and
			water, varying in	Garrigues, 1995
			temperature and pH	
Relevant	Desethyl az	inphos-ethyl	Formed in soil under	Tomlin, 2002
metabolites	Sulfonmethylbenzazimid		aerobic and	
	Bis(benzaz	imidmethyl)ether	anaerobic conditions	
	Methylthio	methylsulfoxide		
	Methylthio	methylsulfone		

3.1.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for azinphos-ethyl is given in Table 7. Detailed bioaccumulation data for azinphos-ethyl are tabulated in Appendix 1.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	256	Using lethal body burden	Ohayo-Mitoko and Deneer, 1993
		136	Using lethal body burden	Deneer et al., 1999
		101	EpiWin	US EPA, 2007
BMF	[kg/kg]	1	Default value	

Table 7. Overview of bioaccumulation data for azinphos-ethyl.

3.1.1.5 Human toxicological treshold limits and carcinogenicity

Azinphos-ethyl has not been classified as carcinogenic to humans. Azinphos-ethyl is classified as T+; R28; T; R24; N; R50-53. No ADIs were found in the relevant databases.

3.1.2 Trigger values

This section reports on the trigger values for ERL derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\log K_{p,susp-water}$	1.4	[-]	$K_{\rm oc} \times f_{\rm oc,susp}^{1}$	K _{oc} : 3.1.1.2
BCF	≥136	[L/kg]		3.1.1.4
BMF	1	[-]		3.1.1.4
Log K _{ow}	3.4	[-]		3.1.1.2
R-phrases	T+; R24; T; R28;	[-]	http://ecb.jrc.it/esis/	3.1.1.5
	N; R50/53			
A1 value	1	[µg/L]	total pesticides	
DW standard	0.1	[µg/L]	general value for	
			organic pesticides	

Table 8. Azinphos-ethyl: collected properties for comparison to MPC triggers.

 $^{1}f_{\text{oc,susp}} = 0.1 \text{ kg}_{\text{oc}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

• Azinphos-ethyl has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.

• Azinphos-ethyl has a log $K_{p,susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.

• Azinphos-ethyl has a BCF > 100; assessment of secondary poisoning is triggered.

- Azinphos-ethyl has a BCF > 100 and an R24, R28 classification. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{hh food,water}) should be derived.
- For azinphos-ethyl, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440/EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.1.3 Toxicity data and derivation of ERLs for water

An overview of the selected freshwater toxicity data is given in Table 9 and an overview of the selected marine toxicity data is given in Table 10. Detailed toxicity data for azinphos-ethyl are tabulated in Appendix 2.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
No chronic data		Mollusca	3082
		Crustacea	4
		Crustacea	3.2
		Crustacea	4.1 ^b
		Insecta	1.5
		Pisces	1.1 ^c
		Pisces	19.5 ^d

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Geomean of 4 and 4.2, parameter immobility for Simocephalus serrulatus

^c Parameter mortality for *Lepomis macrochirus*, most relevant exposure duration.

^d Geomean of 20 and 19, parameter mortality for Oncorhynchus mykiss

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
No chronic data		Crustacea	48

^a For detailed information see Appendix 2.

3.1.3.1 MPC_{eco,water} and MPC_{eco,marine}

The base–set (fish, *Daphnia*, and algae) is incomplete. No chronic data are available. According to Lepper (2005): 'However, long-term annual EQS shall not be derived exclusively on the basis of acute toxicity data'. However, because long term toxicity data are available for similar compounds (for instance azinphos-methyl, see section 3.2.3), MPC values can be derived for azinphos-ethyl.

The base-set is not complete. Toxicity data for algae are not available, but read-across to azinphosmethyl shows that algae are not sensitive to this type of compound. Thus, the MPC_{eco,water} and MPC_{eco,water} are derived using the lowest LC50 (1.1 μ g/L for fish). With an assessment factor of 1000, the MPC_{eco,water} then becomes 1.1 / 1000 = 1.1 × 10⁻³ μ g/L; with an assessment factor of 10000, the MPC_{eco,marine} becomes 1.1/1000 = 1.1 × 10⁻⁴.

3.1.3.2 MPC_{sp,water} and MPC_{sp,marine}

Azinphos-ethyl has a BCF>100, thus assessment of secondary poisoning is triggered. The lowest MPC_{oral} is 0.07 mg/kg diet for dogs (see Table 11). Subsequently, the MPC_{sp,water} can be calculated using a BCF of 136 and a BMF of 1 (section 3.1.1.4) and becomes $0.07 / (136 \times 1) = 5.1 \times 10^{-4}$ mg/L = 0.51μ g/L.

Species ^a	Exposure time	Criterion	Effect concentration (mg/kg diet)	Assessment factor	MPC _{oral} (mg/kg diet)
Chicken	30 days	NOEC	150	30	5.0
Dog	6 weeks	NOEC	2.1	30 ^b	0.07
Dog	32 months	NOEC	30	30	1.0
Rat	16 weeks	NOEC	10	90	0.11

Table 11. Azinphos-ethyl: selected bird and mammal data for ERL derivation.

^a For detailed information see Appendix 4. Bold values are used for risk assessment.

^b Because the 6 week NOAEL for dogs is lower than the 32 month NOAEL, the assessment factor for this study is set at the assessment factor for the 32 month study.

For the marine environment, an extra biomagnification factor should be used. But since this factor is 1 by default for compounds with log $K_{OW} < 4.5$, the MPC_{sp,marine} equals the MPC_{sp,water} and is also 0.51 µg/L.

3.1.3.3 MPC_{hh food,water} and MPC_{hh food,marine}

Derivation of $MPC_{hh food}$ for azinphos-ethyl is triggered (section 3.1.1.5). However, no ADI can be found for azinphos-ethyl. The case of coumaphos for example (section 3.3.3.3), shows that the $MPC_{hhfood,water}$ for coumaphos is much higher than the $MPC_{eco,water}$ and is thus of no relevance for the selection of the MPC_{water} and MPC_{marine} . Here, for azinphos-ethyl it is shown that the route of secondary poisoning leads to much higher MPC values than direct ecotoxicity. Therefore, in general the direct route of toxicity is for these type of compounds probably much more important than indirect effects through the uptake of food.

3.1.3.4 MPC_{dw,water}

The MPC_{dw,water} is 0.1 μ g/L according to the Drinking Water Standard.

3.1.3.5 Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The lowest value of the routes included is the value for direct aquatic toxicity. Therefore, the MPC_{water} is $1.1 \times 10^{-3} \mu g/L$ (based on the MPC_{eco,water}), and the MPC_{marine} is $1.1 \times 10^{-4} \mu g/L$ (based on the MPC_{eco,marine}).

3.1.3.6 MAC_{eco}

The base-set for acute data is not complete, but algae are not sensitive to this group of compounds. Normally, an assessment factor of 100 should be used, but since the BCF is larger than than 100, the assessment factor could be increased (Van Vlaardingen and Verbruggen, 2007). However, the mode of action of this compound may be either narcosis or AChE inhibition, because of its relatively high log K_{OW} . When the mode of action is narcosis, the data show that for the most sensitive species there is not much variation. When the mode of action is specifically AChE inhibition, the most sensitive species are included. Thus, an assessment factor of 100 should be used on the lowest L(E)C50 value (1.1 µg/L for fish). The MAC_{eco water} then becomes $1.1 / 100 = 1.1 \times 10^{-2} \mu g/L$.

In the case of azinphos-ethyl, no acute toxicity data are available for specific marine taxa, and thus an additional assessment factor of 10 is used on the MAC_{eco,water} and the provisional MAC_{eco,marine} is set at $1.1 \times 10^{-2} / 10 = 1.1 \times 10^{-3} \,\mu\text{g/L}$.

3.1.3.7 NC

The negligible concentration (NC) is derived by dividing the derived MPCs by a factor of 100: $NC_{water} = 1.1 \times 10^{-5} \mu g/L.$ $NC_{marine} = 1.1 \times 10^{-6} \mu g/L.$

3.1.3.8 SRC_{eco}

The SRC_{eco,water} and SRC_{eco,marine} can be derived using the geometric mean of all acute and marine freshwater L(E)C50 data (11 μ g/L) with an assessment factor of 10. These data are normally distributed (significant at all levels except 0.1 using the Anderson-Darling test for normality). The SRC_{eco,water} and SRC_{eco,marine} are set at 11 / 10 = 1.1 μ g/L.

3.2 Azinphos-methyl

3.2.1 Substance identification, physicochemical properties, fate and human toxicology

3.2.1.1 Identity

Figure 2. Structural formula of azinphos-methyl.

Parameter	Name or number
Chemical name	O,O-dimethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl]
	phosphorodithioate or S-(3,4-dihydro-4-oxobenzo[d]-[1,2,3]-triazin-
	3-ylmethyl) O,O-dimethyl phosphorodithioate (IUPAC)
Common/trivial/other name	Azinphos-methyl, Metiltriazotion, Gusathion M, Acifon, Azinugec,
	Cotnion-methyl, Guthion, Aziflo, Azin-PB, Crysthyon, Mezyl,
	Sniper, Valefos
CAS number	86-50-0
EC number	201-676-1
SMILES code	S=P(OC)(OC)SCN1N=Nc2cccc2C1=O

Table 12.	Identification	of azin	phos-methy	yl.
-----------	----------------	---------	------------	-----

3.2.1.2 Physicochemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	317.3		
Water solubility	[mg/L]	28	20 °C	Tomlin, 2002
		30	20 °C; selected	Mackay et al., 2000
p <i>K</i> a	[-]	n.a.		
$\log K_{\rm ow}$	[-]	2.7	selected slow stirring	Mackay et al., 2000
		2.72	method; 25 °C	Deneer et al., 1999
		2.76	slow stirring method	de Bruyn and Hermens, 1993;
		2.96		Tomlin, 2002; IUCLID, 2000;
				Anonymous, 1996
		2.53	EpiWin	US EPA, 2007
		2.75	MlogP	BioByte, 2004
		2.55	ClogP	BioByte, 2004
$\log K_{\rm oc}$	[-]	2.61	Selected	Mackay et al., 2000
		2.36	Calculated using log	According to Sabljic et al.,
			$K_{\rm ow}$ of 2.7	1995
Vapour pressure	[Pa]	5.0×10^{-7}	20 °C	Tomlin, 2002
		1.0×10^{-6}	25 °C	Tomlin, 2002
		1.8×10^{-6}	20 °C	IUCLID, 2000
		3.0×10^{-5}	20 °C; selected	Mackay et al., 2000
		1.8×10^{-4}	20 °C	Anonymous, 1996
Melting point	[°C]	73		Tomlin, 2002, Anonymous,
				1996, Mackay et al., 2000
Boiling point	[°C]	>200	Selected	Mackay et al., 2000
Henry's law	$[Pa.m^3.mol^{-1}]$	5.7×10^{-6}	20 °C	Tomlin, 2002
constant	_	3.2×10^{-4}	selected	Mackay et al., 2000
		2.0×10^{-3}		Anonymous, 1996

Table 13. Physicochemical properties of azinphos-methyl.

n.a. = not applicable.

3.2.1.3 Behaviour in the environment

Table 14. Selected environmental properties of azinphos-methyl.

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-	DT50 [d]	87	рН 4; 22 °С	Tomlin, 2002
life		50	рН 7; 22 °С	Tomlin, 2002
		4	рН 9; 22 °С	Tomlin, 2002
Photolysis half- life	DT50 [d]	0.4-3.2	Only an indication due to various deviations in the system	Anonymous, 1996
Biodegradation	See text below			
Relevant	Monodesmethyl comp	pound	In mammals	Tomlin, 2002
metabolites	Benzazimide		In mammals, plants	Tomlin, 2002
	Azinphos-methyl oxo	n	In plants	Tomlin, 2002
	Mercaptomethyl benz	zazimide	In plants	Tomlin, 2002
			In soil	Panman and Linders, 1990

According to the IUCLID database, azinphos-methyl is very stable in water to hydrolysis below pH 10.0. However, the data in the pesticide manual show that already at pH 9.0, azinphos-methyl is rapidly hydrolyzed to anthranilic acid, benzamide, and other metabolites. Azinphos-methyl is rapidly degraded in water, with half-lives values ranging from less than one day to several weeks depending on the type of water. In a water/sediment-study (conducted in darkness) half-lives of less than four days are found. Under natural conditions and in the presence of light, the degradation of azinphos-methyl occurs even faster. In aerobic soils, azinphos-methyl is degraded with half-lives determined under laboratory conditions ranging from some days to some weeks. In the field the half-lives range from 1.5 to several days (IUCLID, 2000).

3.2.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for azinphos-methyl is given in Table 15. Detailed bioaccumulation data for azinphos-methyl are tabulated in Appendix 1.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	34.9	Using lethal body burden	Deneer et al., 1999
		17.8	EpiWin	US EPA, 2007
BMF	[kg/kg]	1	Default value	

3.2.1.5 Human toxicological treshold limits and carcinogenicity

Azinphos-methyl has not been classified as carcinogenic to humans. Azinphos-methyl is classified as T+; R26/28; T: R24; R43; N; R50/53. An ADI of 0.005 mg/kg bw is reported based on a NOEL (0.48 mg/kg bw/d) for reproduction in a 2-generation study in rats (Anonymous, 1996).
3.2.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\text{Log } K_{p, \text{susp-water}}$	1.61	[-]	$K_{\rm oc} \times f_{\rm oc,susp}^{1}$	K _{oc} : 3.2.1.2
BCF	35	[L/kg]		3.2.1.4
BMF	1	[-]		3.2.1.4
$\log K_{\rm ow}$	2.7	[-]		3.2.1.2
R-phrases	T+; R26/28; T; R24; R43; N;	[-]	http://ecb.jrc.it/esis/	3.2.1.5
	R50/53			
A1 value	1	[µg/L]	total pesticides	
DW standard	0.1	[µg/L]	general value for organic pesticides	

Table 16. Azinphos-methyl: collected properties for comparison to MPC triggers.

 $f_{oc,susp} = 0.1 \text{ kg}_{oc}/\text{kg}_{solid}$ (European Commission (Joint Research Centre), 2003).

- Azinphos-methyl has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.
- Azinphos-methyl has a log $K_{p, susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.
- Azinphos-methyl has a BCF < 100; assessment of secondary poisoning is not triggered.
- Azinphos-methyl has a BCF < 100 and an R26/28; R24; R43; R50/53 classification. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{water, hh food}) does not need to be derived.
- For azinphos-methyl, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440/EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.2.3 Toxicity data and derivation of ERLs for water

An overview of the selected freshwater toxicity data for azinphos-methyl is given in Table 17 and for marine toxicity data in

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
Algae	1800	Algae	6650
Crustacea	0.42 ^b	Crustacea	21
Crustacea	0.1 ^c	Crustacea	4.8
Crustacea	0.1	Crustacea	2.4 ^g
Insecta	1.4	Crustacea	0.48
Insecta	0.24	Crustacea	0.18 ^h
Insecta	2	Crustacea	0.24
Insecta	2.5	Crustacea	0.14ⁱ
Insecta	2.9	Crustacea	0.29
Insecta	1.7	Crustacea	0.39 ^j
Insecta	1.3	Crustacea	56
Insecta	40	Insecta	4.1 ^k
Pisces	100	Insecta	12.6 ¹
Pisces	0.36	Insecta	14
Pisces	0.44	Insecta	2.36 ^m
Pisces	0.33 ^d	Insecta	26.6 ⁿ
Pisces	5.23 ^e	Pisces	2350°
Ampbibia	100	Pisces	695
Amphibia	30	Pisces	68
Amphibia	980	Pisces	4242 ^p
Amphibia	627 ^f	Pisces	3254 ^q
		Pisces	52
		Pisces	10.4 ^r
		Pisces	21 ^s
		Pisces	120
		Pisces	5
		Pisces	5.2
		Pisces	5.4 ^t
		Pisces	5.7 ^u
		Pisces	4.3
		Pisces	$14^{\rm v}$
		Pisces	819 ^w
		Pisces	57 ^x
		Pisces	3
		Pisces	42.5
		Pisces	2.82 ^y
		Pisces	4.0^{z}
		Amphibia	1670
		Amphibia	1900
		Amphibia	10440
		Amphibia	119 ^{aa}
		Amphibia	1170 ^{ab}
		Amphibia	3200

Table 18. Detailed toxicity data for azinphos-methyl are tabulated in Appendix 2.

Table 17. Azinphos-methyl: selected aquatic freshwater data for ERL derivation.

RIVM Report 601714004

Amphibia	7600
Amphibia	7180
Amphibia	901 ^{ac}

- ^a For detailed information see Appendix 2. Bold values are used for risk assessment.
- ^b Geomean of 0.25 and 0.70; parameter immobility/mortality for Asellus aquaticus.
- ^c lowest value; parameter immobility for *Daphnia magna*.
- ^d Lowest value, parameter fecundity for *Pimephales promelas*.
- ^e Geomean of 18, 15, 3.5, 2.3, and 1.8, parameter mortality for *Salmo salar*.
- ^f Geometric mean of 820 and 480, lowest value, parameter length for *Xenopus laevis*.
- ^g Geometric mean of 1.1, 1.6, 1.5, 4.4, en 6.7, parameter immobilization for *Daphnia magna*; most relevant exposure duration.
- ^h Geometric mean of 0.15, 0.1, and 0.38, parameter mortality for *Gammarus fasciatus*.
- ¹Geometric mean of 0.15 and 0.126, parameter mortality for *Gammarus lacustris*.
- ^j Geometric mean of 1.2 and 0.13, parameter mortality after 96 hours for *Palaemonetes kadiakensis*.
- ^k Geometric mean of 8.5 and 2, parameter mortality for *Acroneuria pacifica*.
- ¹Geomean of 13.3 and 12, parameter immobility/mortality for *Cloeon dipterum*.
- ^m Geomean of 1.9, 4.6, and 1.5, most sensitive life-stage, parameter mortality after 96h for *Pteronarcys californica*.
- ⁿ Most sensitive life-stage, parameter mortality for *Xanthocnemis zealandica*.
- ^o Geomean of 2230, 2180, 2680, 2450, 2480, 1710, 2070, 2050, 2080, 2130, 3860, 1880, 3020, 2050, 1350, 3750, 1400, 4270, 2400, 1040, and 7200, parameter mortality for *Carassius auratus*.
- ^p Geomean of 4600, 4810, and 3500, parameter mortality for *Ictalurus melas*.
- ^q Geomean of 3290 and 3220, most relevant exposure time, parameter mortality for *Ictalurus punctatus*.
- ^r Geomean of 8.2, 8, 4.1, 17, 34, 4.8, 22, 120, 9.3, 6.9, 7.4, 4.2, 8.8, and 5.2, parameter mortality for *Lepomis macrochirus*.
- ^s Geomean of 52 and 8.8, parameter mortality for *Lepomis microlophus*.
- ^t Geomean of 6.1, 3.2, 3.2, 17, and 4.2, parameter mortality for *Oncorhynchus kisutch*.
- ^u Geomean of 4.3, 7.1, 5.8, 6.3, 2.9, 14, 3.2, 9.1, 7, 6.8, 6.2, 5.5, 3, and 5.3, parameter mortality for *Oncorhynchus mykiss*.
- ^v Geomean of 15, 40, 5.6, 2.4, 17, 29, 8.5, 29, 18, 36, 11, 27, 10, 6.5, and 13, parameter mortality for *Perca flavescens*.
- ^w Geomean of 293, 148, 3260, 2170, 1060, 910, 1950, 2170, 2080, 540, 2530, 1460, 2320, 2470, 2910, 1980, 1200, 1460, 235, 1900, 65, 160, 93, and 64, parameter mortality for *Pimephales promelas*. Please note that all higher values originate from the same study by Adelman and coworkers; the study is however well-documented, concentrations are measured.
- ^x Most relevant exposure duration, parameter mortality for *Poecilia reticulata*.
- ^y Geomean of 2.1, 2.7, 3.2, 3.5, 3.6, 2.5, and 2.5, parameter mortality for *Salmo salar*.
- ^z Geomean of 4.6, 4.3, 3.5, 6, 5.1, 6.6, 1.2, and 4, parameter mortality for *Salmo trutta*.
- ^{aa} Geomean of 109 and 130, parameter mortality for *Bufo woodhousei fowleri.i*
- ^{ab} Geomean of 4140, 840, and 460, parameter mortality for *Pseudacris regilla*.
- ^{ac} Geomean of 2950, 590, and 420, parameter mortality for most sensitive life-stage of *Xenopus laevis*.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
Mollusca	410	Bacteria	315 ^e
Mollusca	390 ^b	Crustacea	1.99
Crustacea	0.02 ^c	Crustacea	420 ^f
Pisces	0.21^{d}	Crustacea	57
		Crustacea	0.55
		Crustacea	0.24 ^g
		Crustacea	0.38 ^h
		Crustacea	0.55
		Crustacea	2.4^{i}
		Mollusca	4700
		Pisces	2
		Pisces	49 ^j
		Pisces	4.8^{k}
		Pisces	28
		Pisces	17
		Pisces	1470
		Pisces	3.2
		Pisces	5.5
		Pisces	6.2^{1}

Table 18. Azinphos-methyl: selected aquatic marine data for ERL derivation.

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Lowest value, parameter survival for *Mercenaria mercenaria*.

^c Lowest value, parameter 'number of young', *Mysidopsis bahia*.

^d Geomean of 0.17 and 0.25, parameter survival for *Cyprinodon variegatus*.

^e Most common exposure time (15-20 min) for the parameter luminescence for *Vibrio fisherii*.

^f Geomean of 320 and 550, parameter immobility/mortality for *Callinectes sapidus*.

^g Geomean of 0.29 and 0.2, parameter mortality for *Mysidopsis bahia*.

^h Most sensitive life-stage, parameter mortality for *Palaemonetes pugio*.

¹Most sensitive life-stage, parameter mortality/immobility for *Penaeus aztecus*.

^j Geomean of 28, 36.95, 85.1, 64.5, parameter mortality for *Fundulus heteroclitus*.

^k Lowest value of 4.8 at highest temperature of 25 °C, parameter mortality for *Gasterosteus aculeatus*.

¹ Lowest value of 6.2 at highest temperature of 20 °C, parameter mortality for *Sciaenops ocellatus*.

3.2.3.1 MPC_{eco,water} and MPC_{eco,marine}

Mesocosm studies

A total number of five mesocosm studies are performed with azinphos-methyl. Two of them with acute exposure, and two with chronic exposure regimes. Details are provided in Appendix 3, but in this paragraph a short description will be given.

Acute

Stay and Jarvinen (1995) used mixed flask culture microcosms for a single application of azinphosmethyl in 7 different concentrations. The microcosms were stocked with a culture of organisms from a natural community (no fish). Results of water analyses were not reported, except for a half-life of greater than 2 days. Thus, this study can only be used for acute exposure. Effects were assessed on zooplankton, and an acute NOEC and LOEC were reported of 0.2 μ g azinphos methyl/L and 0.8 μ g/L, respectively. These effect concentrations should be used with outmost care within environmental quality standard setting, because of some unclarities in experimental setup and statistical treatment. Tanner and Knuth (1995) exposed adult bluegills to a single application of azinphos-methyl in littoral enclosures in a mesotrophic pond including macrophytes. Two concentrations (1.0 and 4.0 μ g/L) and a control were included. Samples were taken at various time intervals, and half-lives of 2.3 and 2.4 days were reported. No statistically significant effects were observed on fish reproduction, behaviour, and biomass, due to the large variation. Effects on copepod nauplii at 1 and 4 μ g/L one week after pesticide application were the only effects significantly underpinned. Therefore, the NOEC of the present study is considered to be below the lowest tested concentration (nominal concentration 1.0 μ g/L), which can be used for EQS-derivation for short-term exposure. However, results could be biased due to predation effects by fish.

A non-evaluated study by Knuth et al. (1992), mentioned in a review by Van Wijngaarden et al. (2005), yielded a ecosystem-NOEC of 0.2 μ g/L and an ecosystem-LOEC (with severe effects) of 1.0 μ g/L for a single application in a stagnant stream.

The study by Giddings et al. (1994), summarized below, can also be used to assess acute toxicity.

Chronic

Giddings et al. (1994) applied azinphos-methyl in 5 different concentrations in weekly intervals to 20 by 20 m ponds (400 m³), including fish and macrophytes. Water was analyzed at various time intervals, results show that azinphos-methyl concentrations in water declined rapidly with half-lives ranging from 1 to 2 days on average over the 5 different concentrations. Effects on fish, zooplankton, and macroinvertebrates were assessed. The NOEC of the present study is the treatment with a mean peak of 0.24 μ g/L and mean actual concentration of 0.13 μ g/L during the application period (weekly applications during the test period of 55 days). However, introduction of fish and effects of feeding by fish on invertebrates may have biased the test results.

Dortland (1980) performed outdoor cosm experiments over two consecutive years. In the first year, one cosm was treated with 1 µg/L azinphos-methyl versus 6 controls, in the second year two cosms were treated against three controls. A constant insecticide concentration was maintained by sampling the water column twice per week for chemical analysis and reapplying the disappeared azinphos-methyl to maintain 1 µg/L. Average actual concentrations were 0.81μ g/L in the first year and 0.61μ g/L in the second year. Macrofauna was only analyzed at the end of the experiment, but zooplankton was analyzed regularly, and showed that 1 µg azinphos-methyl/L can strongly reduce populations of Cladocera. Although statistics were not performed on the data and no (first year) or only one (second year) replicate was applied, from the presented figures it can be deduced that zooplankton indeed was negatively and chronically affected by the pesticide treatment. The treatments had actual concentrations of 0.81μ g/l and 0.61μ g/l and therefore, the NOEC is considered to be < 0.61μ g azinphos-methyl/L.

Derivation of MPC_{eco,water} and MPC_{eco,marine}

The base-set for azinphos-methyl is complete, and chronic toxicity data are also available for algae, crustaceans, mollusca, and fish, with the lowest NOEC of 0.02 for *Mysidopsis bahia*. Although azinphos-methyl was developed as an insecticide, the data show that crustaceans are also very sensitive. Thus, chronic toxicity data are available for two sensitive groups (insects and crustaceans), and an assessment factor of 10 can be used to derive the MPC_{eco,water}. Two mesocosm studies with long-term effects were performed. The NOECs for these studies are higher (0.13 μ g/L and 0.61 μ g/L) than the lowest NOEC for crustacea (0.02 μ g/L). This means that the chronic tests and not the cosm studies produce the lowest data.

However, chronic toxicity data are available for algae, crustaceans, insects, fish, amphibians and molluscs, adding up to 25 species of which molluscs can be considered as typical marine species. The data requirements for applying the statistical extrapolation method are not fully met, because no toxicity data are availably for macrophytes. From the aquatic mesocosm studies (Giddings et al., 1994; Dortland, 1980) it appears that aquatic plants are not particularly sensitive to azinphos-methyl, although some effects could not be ruled out at concentrations of 0.61 to 0.81 μ g/L (Dortland, 1980). Thus, a Species Sensitivity Distribution (SSD) was calculated (see Figure 3). The hazardous concentration at which 5% of the species are potentially affected (HC5), which equals the 5th percentile of the species sensitivity distribution (SSD), is 0.019 μ g/L (90% CI 0.0025 to 0.086 μ g/L).

Figure 3 SSD graph for chronic toxicity data of azinphos-methyl.

To this HC5 an assessment factor varying from 1 to 5 should be applied. First, the arguments in favour of a higher assessment factor are given: some of the studies for the most sensitive taxa (crustaceans and insects) are focused on rather insensitive endpoints such as immobility and mortality. Data on macrophytes are missing, and there is only one chronic test result available for algae. Although these species are probably not amongst the most sensitive, the absence of such data may have its influence on the shape of the SSD curve and hence on the HC5. The goodness-of-fit of the curve fitting is rejected by all three testing methods (Anderson-Darling, Kolmogorov-Smirnov and Cramer von Mises) at the 0.1 significance level. The lower limit of the HC5 is a factor of eight lower than the median HC5. Although these factors would strongly imply an assessment factor not lower than 5, there are some strong arguments to lower the assessment factor as well. First, the dataset is quite comprehensive. Next to that, the mode of action is well-known for the most sensitive species (acetyl choline esterase inhibition in crustaceans, insects and other arthropoda). Arthropoda are relatively well represented in the data set (4 crustaceans and 8 insects). Further, the few available mesocosm studies show that effects in these systems are not observed at levels below 0.1 µg/L. No individual NOEC below the HC5 were observed. Overall an assessment factor of three on the HC5 is considered most appropriate. The resulting MPC_{eco,water} then becomes $6.5 \times 10^{-3} \,\mu g/L$.

Regarding the MPC_{eco,marine}, data for one typical marine taxon are available. Therefore, in the assessment factor method an additional factor of 5 would be applied to the MPC_{eco, water} value. The FHI guidance mentions only the case of applying an additional factor of 10 when no data for typical marine species are available. However, in this case two NOECs for molluscs are available and the assessment factor of 5 seems justified. The MPC_{eco,marine} thus becomes $1.3 \times 10^{-3} \,\mu g/L$.

3.2.3.2 MPC_{sp,water} and MPC_{sp,marine}

Azinphos-methyl has a BCF<100, thus assessment of secondary poisoning is not triggered.

3.2.3.3 MPC_{hh food,water} and MPC_{hhfood,marine}

Derivation of MPC_{hh food} for azinphos-methyl is not triggered (Table 16).

3.2.3.4 MPC_{dw,water}

The MPC_{dw,water} is 0.1 μ g/L according to the Drinking Water Standard.

3.2.3.5 Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The lowest value of the routes included is the value for direct aquatic toxicity. Therefore, the MPC_{water} is $6.5 \times 10^{-3} \,\mu\text{g/L}$ and the MPC_{marine} is $1.3 \times 10^{-3} \,\mu\text{g/L}$.

3.2.3.6 MAC_{eco}

The base-set for acute data is complete, the data for different species differ by more than a factor of 3. Enough data are present to perform an SSD. This results in a HC5 of 0.14 μ g/L, with a rejected 'goodness-of-fit' (Figure 4). According to the guidance, a default assessment factor of 10 should be used on the results of an SSD for acute data. Because of the lack of 'goodness of fit', there is no justification to lower this default assessment factor, which would result in a MAC_{eco} of 0.14 / 10 = 0.014 μ g/L.

However, it can be argued that the most sensitive taxonomic groups have been tested. Azinphos-methyl is an acetylcholine esterase inhibitor and therefore the substance is most toxic to arthropods. Crustaceans appear to be even more sensitive than insects (when tested with a t-test (p = 0.06) this difference is almost significant). And indeed, fish, amphibians, molluscs, algae, and bacteria are much less sensitive. For illustrative purposes, an SSD on the most sensitive species (crustaceans and insects) can be calculated, which results in a HC5 of 0.06 µg/L (Figure 5). Although the goodness-of-fit of this SSD is better than for the SSD of all acute data, an assessment factor of 4 or 5 on this HC5 would certainly be justified, since the fit of the SSD is not well and there is no bimodality.

Regarding the assessment factor approach, the BCF is lower than 100, which means that an assessment factor of 100 could be used on the lowest L(E)C50 value (0.14 μ g/L for crustaceans). However, because of the large number of data for crustaceans and insects and the known mode of action, an assessment factor of 10 seems justified in this case. The MAC_{eco,water} then becomes 0.14 / 10 = 0.014 μ g/L.

Figure 4. SSD for azinphos-methyl, using acute toxicity data for all species.

Figure 5. SSD for azinphos-methyl, using acute toxicity data for sensitive species.

According to the guidance (Van Vlaardingen and Verbruggen, 2007), data from mesocosm studies with short-term exposure can also be used to derive a MAC_{eco}. However, chronic laboratory tests show a higher sensitivity than the mesocosm study results with a NOEC of 0.2 μ g/L. This difference may be caused by the short exposure peak in the mesocosm studies, as opposed to a 96 hour exposure in acute laboratory tests. Moreover, a number of acute laboratory tests even show LC50 values which are close to this ecosystem-NOEC. Thus, the MAC_{eco,water} is not derived based on mesocosm studies, and the

MAC derived using the SSD for all species and the MAC derived using assessment factors is the final $MAC_{eco,water}$ (0.014 µg/L).

In the case of azinphos-methyl, acute toxicity are reported for one specific marine taxon (mollusca), and thus an additional assessment factor of 5 is used on the MAC_{eco,water} and the provisional MAC_{eco,marine} is set at 0.014 / $5 = 2.8 \times 10^{-3} \mu g/L$.

3.2.3.7 NC

The negligible concentration (NC) is derived by dividing the derived MPCs by a factor of 100: $NC_{water} = 6.5 \times 10^{-5} \mu g/L.$ $NC_{marine} = 1.3 \times 10^{-5} \mu g/L.$

3.2.3.8 SRC_{eco}

Chronic data are available for algae, crustacea (among which *Daphnia*), mollusca and fish, the geomean of all chronic data is 4.8 μ g/L and these data are normally distributed (significant at all levels using the Anderson-Darling test for normality). When three or more NOECs are available, a comparison with acute data is not necessary. The SRC_{eco,water} and SRC_{eco,marine} can be derived using an assessment factor of 1 and become 4.8 / 1 = 4.8 μ g/L.

3.3 Coumaphos

3.3.1 Substance identification, physicochemical properties, fate and human toxicology

3.3.1.1 Identity

Figure 6. Structural formula of coumaphos.

Table 19.	Identification	of coumaphos.
-----------	----------------	---------------

Parameter	Name or number
Chemical name	O-3-chloro-4-methyl-2-oxo-2H-chromen-7-yl O,O-diethyl
	phosphorotioate; 3-chloro-7-diethoxyphosphinothioyloxy-4-
	methylcoumarin (IUPAC) or O-(3-chloro-4-methyl-2-oxo-2H-1-
	benzopyran-7-yl) O,O-diethyl phosphorothioate (Chemical abstracts)
Common/trivial/other name	Co-Ral; Resitox; Asuntol; Perizin
CAS number	56-72-4
EC number	200-285-3
SMILES code	S=P(OCC)(OCC)Oc1ccc2C(C)=C(Cl)C(=O)Oc2c1

3.3.1.2 Physicochemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	362.8		
Water solubility	[mg/L]	1.5	20 °C	Tomlin, 2002
		2		US EPA, 2000
pK _a	[-]	n.a.		
$\log K_{\rm ow}$	[-]	4.13		Tomlin, 2002
		4.01	RP-HPLC technique	Finizio et al., 1997
		4.47	EpiWin	US EPA, 2007
		4.13	MlogP	BioByte, 2004
		4.33	ClogP	BioByte, 2004
$\log K_{\rm oc}$	[-]	3.58	EpiWin	US EPA, 2007
		3.6-4.1		US EPA, 2000
		3.02	Calculated using log	According to Sabljic
			Kow of 4.1	et al., 1995
Vapour pressure	[Pa]	1.3×10^{-5}		Tomlin, 2002
Melting point	[°C]	95		Tomlin, 2002
Boiling point	[°C]	455	EpiWin	US EPA, 2007
Henry's law constant	$[Pa.m^3.mol^{-1}]$	3.1×10^{-3}		Tomlin, 2002

Table 20. Physicochemical properties of coumaphos.

n.a. = not applicable.

3.3.1.3 Behaviour in the environment

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]		Stable to hydrolysis	Tomlin, 2002
Photolysis half-life	DT50 [d]	23.8	Soil surface	Tomlin, 2002
		1.4	Water	US EPA, 2000
Degradability	DT50 [d]	>1 yr	Sandy loam, aerobic	US EPA, 2000
		316		US EPA, 2000
Relevant metabolites	O,O-diethyl-O	-(3-acetoxy)	phenylphosphorothioate	
	Coumaphoxon			
	Chlorferon			
	Coumaphos oxygen analog			
	3-methyl-6-hydroxybenzofuran			

Table 21. Selected environmental properties of coumaphos.

3.3.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for coumaphos is given in Table 22. Detailed bioaccumulation data for coumaphos are tabulated in Appendix 1.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	554.5	EpiWin	US EPA, 2007
		110	Equilibrium method after only three days exposure	Freitag et al., 1985
		541		US EPA, 2000
BMF	[kg/kg]	1	Default value	

Table 22. Overview of bioaccumulation data for coumaphos.

3.3.1.5 Human toxicological treshold limits and carcinogenicity

Coumaphos has not been classified as carcinogenic to humans. The main effect of coumaphos is inhibition of cholinesterase activity. Coumaphos is classified as T+; R28; Xn; R21; N; R50/53. No ADI values are derived by European or WHO authorities, but an ADI of 0.0003 mg/kg_{bw} is proposed by the Canadian authorities, based on a NOAEL of 0.3 mg/kg_{bw}/d from a 2-generation reproduction study in rats and a NOAEL of 0.36 mg/kg_{bw}/d from a 2-year rat chronic carcinogenicity study (Pesticide Management Regulatory Agency, 2003). The US EPA also reports an PAD (Population Adjusted Dose, equivalent to an ADI) of 0.0003 mg/kg_{bw}, based on a NOAEL of 0.025 mg/kg day in a chronic dietary toxicity study for dogs (US EPA, 2000).

3.3.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\text{Log } K_{\text{p,susp-water}}$	2.6-3.1	[-]	$K_{\rm oc} \times f_{\rm oc,susp}^{1}$	$K_{\rm oc}$: 3.3.1.2
BCF	541	[L/kg]		3.3.1.4
BMF	1	[-]		3.3.1.4
$Log K_{ow}$	4.1	[-]		3.3.1.2
R-phrases	T+; R28; Xn;	[-]	http://ecb.jrc.it/esis/	3.3.1.5
	R21; N; R50/53			
A1 value	1.0	$[\mu g/L]$	total pesticides	
DW standard	0.1	$[\mu g/L]$	general value for	
			organic pesticides	

Table 23. Coumaphos: collected properties for comparison to MPC triggers.

 $^{1}f_{\text{oc,susp}} = 0.1 \text{ kg}_{\text{oc}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

• Coumphos has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.

- Coumaphos has a log $K_{p, susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.
- Coumaphos has a BCF > 100; assessment of secondary poisoning is triggered.
- Coumaphos has a BCF > 100 and an R28 classification. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{water, hh food}) need to be derived.
- For coumaphos, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440/EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.3.3 Toxicity data and derivation of ERLs for water

An overview of the selected freshwater toxicity data for coumaphos is given in Table 24 and an overview of the selected marine toxicity data is given in Table 25. Detailed toxicity data for coumaphos are tabulated in Appendix 2.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
Crustacea	0.034	Crustacea	0.1
Pisces	11.7	Crustacea	0.15
		Crustacea	0.074
		Crustacea	0.1
		Insecta	20
		Insecta	30
		Insecta	427
		Insecta	5.2
		Pisces	840
		Pisces	247 ^b
		Pisces	1100
		Pisces	862
		Pisces	1155 ^c
		Pisces	560
		Pisces	46
		Pisces	593
		Pisces	780

Table 24. Coumaphos: selected aquatic freshwater data for ERL derivation.

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Geomean of 180 and 340, parameter mortality for *Lepomis macrochirus*.

^c Geomean of 1500 and 890, parameter mortality Oncorhynchus mykiss.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
Mollusca	20^{b}	Mollusca	290 ^d
Mollusca	50 ^c	Crustacea	2
		Pisces	280
		Pisces	1654 ^e

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Lowest value, parameter growth for *Crassostrea virginica*.

^c Lowest value, parameter growth for *Mercenaria mercenaria*.

^d Lowest value and most relevant temperature (9 °C) for *Crassostrea virginica*.

^e Geomean of 1862 and 1470, parameter mortality for *Gasterosteus aculeatus*.

3.3.3.1 MPC_{eco,water} and MPC_{eco,marine}

The base-set is not complete. But because toxicity data from azinphos-methyl show that algae are not sensitive to this group of compounds and chronic data are present for both crustaceans, mollusca and fish, it is allowed to derive MPC_{eco,water} and MPC_{eco,marine} using the chronic dataset. With these three species, and because crustaceans are the most sensitive taxonomic group in acute toxicity studies, an assessment factor of 10 can be applied for the MPC_{eco,water} and because one of these NOECs is from a marine taxonomic group, for the MPC_{eco,marine} an assessment factor of 50 can be used. The lowest NOEc is $0.034 \ \mu g/L$ for crustaceans. Thus, the MPC_{eco,water} becomes $0.034 \ / 10 = 3.4 \times 10^{-3}$ and the MPC_{eco,marine} is set at $0.034 \ / 50 = 6.8 \times 10^{-4} \ \mu g/L$.

3.3.3.2 MPC_{sp,water} and MPC_{sp,marine}

Coumaphos has a BCF>100, thus assessment of secondary poisoning is triggered. The lowest MPC_{oral} is 0.04 mg/kg diet for *Colinus virginianus* (see Table 26). Subsequently, the MPC_{sp,water} can be calculated using a BCF of 541 and a BMF of 1 (section 3.3.1.4) and becomes $0.04 / (541 \times 1) = 7.5 \times 10^{-5}$ mg/L = 0.075 µg/L.

Species ^a	Exposure	Criterion	Effect	Assessment	MPC _{oral}
	time		concentration	factor	(mg/kg diet)
			(mg/kg diet)		
Anas platyrhynchos	5 days	LC50	709	3000	0.24
Colinus virginianus	5 days	LC50	120	3000	0.04
Coturnix c. japonica	5 days	LC50	225	3000	0.08
Phasianus colchicus	5 days	LC50	318	3000	0.11
Dog	1 year	NOEC	90	30	3.0
Rabbit	13 days	NOEC	66.6 ^b	300	0.22
Rat	2 years	NOEC	5	30	0.17
Rat	10 days	NOEC	50 ^c	300	0.17

Table 26. Coumaphos: selected bird and mammal data for ERL derivation.

^a For detailed information see Appendix 4. Bold values are used for risk assessment.

^b based on a NOAEL of 2 mg/kg_{bw}/day with a conversion factor of 33.3.

^c based on a NOAEL of 5 mg/kg_{bw}/day with a conversion factor of 10.

For the marine environment, an extra biomagnification factor should be used. But since this factor is 1 by default, the MPC_{sp,marine} equals the MPC_{sp,water} and is also 0.075 μ g/L.

3.3.3.3 MPC_{hh food,water} and MPC_{hh food,marine}

Derivation of MPC_{hh food,water} for coumaphos is triggered (Table 23). With an ADI of 3 μ g/kg_{bw} (section 3.3.1.5), a BCF of 541 and a BMF of 1 (section 3.3.1.4), the MPC_{hh food} becomes $(0.1 \times 3 \times 70) / 0.115 = 183$ mg/kg. Subsequently, the MPC_{hh food,water} = 183 / (541 × 1) = 0.34 mg/L = 340 μ g/L.

For the marine environment, the MPC_{hh food,marine} is equal to the MPC_{hh food,water} and is 340 µg/L.

3.3.3.4 MPC_{dw,water}

The MPC_{dw,water} is 0.1 μ g.L⁻¹ according to the Drinking Water Standard.

3.3.3.5 Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The lowest value of the routes included is the value for direct aquatic toxicity. Therefore, the MPC_{water} is $3.4 \times 10^{-3} \,\mu\text{g/L}$ and the MPC_{marine} is $6.8 \times 10^{-4} \,\mu\text{g/L}$.

3.3.3.6 MAC_{eco}

The base-set for acute data is not complete, but it can be assumed that algae are not more sensitive than fish or Crustacea. The data for different species differ by more than a factor of 3. Since the BCF is higher than 100, this means that an assessment factor of 1000 should normally be used on the lowest L(E)C50 value (0.074 μ g/L for crustaceans). However, the mode of toxic action is known (acetyl choline esterase inhibitor), and the most sensitive species are tested (crustaceans). These crustaceans are not likely to be exposed for a longer period of time due to slow desorption kinetics. An assessment factor of 100 instead of 1000 for the MAC_{eco,water} is therefore justified. The MAC_{eco,water} then becomes 0.074 / 100 = 7.4 × 10⁻⁴ μ g/L. This is however lower than the MPC_{water}, and thus the MAC_{eco,water} is set equal to the MPC_{water} at 3.4 × 10⁻³ μ g/L.

For comparative reasons (not allowed according to the Fraunhofer methodology because not all required taxa are present) an SSD was performed on the acute toxicity data for all species and for the most sensitive species (crustaceans and insects). This resulted in a HC5 of 0.13 μ g/L (with a rejected 'goodness of fit') for all species and a HC5 of 9.1 × 10⁻³ μ g/L for the most sensitive species.

In the case of coumaphos, acute toxicity are reported for one specific marine taxon (mollusca), and thus an additional assessment factor of 5 is used on the MAC_{eco,water} and the provisional MAC_{eco,marine} becomes 7.4 $7.4 \times 10^{-4} / 5 = 1.5 \times 10^{-3} \,\mu\text{g/L}$. This is however lower than the MPC_{marine}, and thus the provisional MAC_{eco,marine} is set equal to the MPC_{marine} at $6.8 \times 10^{-4} \,\mu\text{g/L}$.

3.3.3.7 NC

The negligible concentration (NC) is derived by dividing the derived MPCs by a factor of 100: $NC_{water} = 3.4 \times 10^{-5} \mu g/L.$ $NC_{marine} = 6.8 \times 10^{-6} \mu g/L.$

3.3.3.8 SRC_{eco}

No acute and chronic toxicity data are available for algae. NOECs are available (for fish, *Daphnia* and mollusca) for which the geometric mean is $4.5 \ \mu g/L$, which is more than 10 times below the geometric mean of all acute data (46.6 $\mu g/L$; not normally distributed according to the Anderson-Darling test at all levels). Thus, the SRC_{eco,water} and SRC_{eco,matine} can be derived using the geometric mean of the NOECs with an assessment factor of 1 and become $4.5 / 1 = 4.5 \ \mu g/L$. Because no chronic data are available for the complete base-set, this value should be compared to the value that can be derived using only acute data. With an assessment factor of 10, the SRC_{eco} using acute LC50s would be 4.7, which is higher than the SRC_{eco} based on NOECs. Thus, the SRC_{eco} is set at 4.5 ug/L for freshwater and for the marine environment.

3.4 Heptenophos

3.4.1 Substance identification, physicochemical properties, fate and human toxicology

3.4.1.1 Identity

Figure 7. Structural formula of heptenophos.

Paramter	Name or number
Chemical name	7-chlorobicyclo[3,2,0]hepta-2,6-dien-6-yl dimethyl phosphate
Common/trivial/other name	Hostaquick, Ragadan
CAS number	23560-59-0
EC number	245-737-0
SMILES code	C1=CC2C(Cl)=C(OP(=O)(OC)OC)C2C1

3.4.1.2 Physicochemical properties

D	TT •4	Valaa	Damarda	D.f
Parameter	Unit	value	Remark	Reference
Molecular weight	[g/mol]	250.6		
Water solubility	[mg/L]	2200		
pK _a	[-]	n.a.		
$\log K_{\rm ow}$	[-]	2.32		Tomlin, 2002
		1.41	EpiWin	US EPA, 2007
		2.32	MlogP	BioByte, 2004
		2.67	ClogP	BioByte, 2004
$\log K_{\rm oc}$	[-]	2.71	EpiWin	US EPA, 2007
		2.17	Calculated using log	According to
			$K_{\rm ow} = 2.3$	Sabljic et al., 1995
Vapour pressure	[Pa]	0.065	15 °C	Tomlin, 2002
		0.17	25 °C	Tomlin, 2002
Melting point	[°C]	72	EpiWin	US EPA, 2007
Boiling point	[°C]	314	EpiWin	US EPA, 2007
Henry's law constant	[Pa.m ³ .mol ⁻¹]	5.7×10^{-5}	20 °C	Tomlin, 2002

n.a. = not applicable.

3.4.1.3 Behaviour in the environment

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	0.12	EpiWin	US EPA, 2007
Photolysis half-life	DT50 [d]	unknown		
Degradability	DT50 [d]	1.4	Soil, field	Tomlin, 2002
		<4h	Lab, aerobic soil	Tomlin, 2002
		27-77h	Lab, water phase of	Tomlin, 2002
			sediment system	
Relevant metabolites	7-chloro-2-bicyclo-(3,2,0)-hepten-6-one		Panman and Linders,	
	2,3-cyclopenteno-cyclopropanecarboxyl acid		1992	

3.4.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for heptenophos is given in Table 30.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	0.40	EpiWin calculation, using log K_{ow} of 1.41	US EPA, 2007
		19	Calculated using log K_{ow} of 2.32	QSAR in Veith et al., 1979
BMF	[kg/kg]	1	Default value	

No BCF studies for heptenophos were available. A BCF of 0.40 is calculated in EpiWin using an estimated log K_{ow} of 1.41. However, this log K_{ow} is almost an order of magnitude lower than the log K_{ow} value mentioned in the pesticide manual (Tomlin, 2002) and the MlogP value from Bioloom for this compound, 2.32. Using the log BCF- log K_{ow} relationship by Veith et al., 1979 (1979), as described by the guidance (Van Vlaardingen and Verbruggen, 2007), log BCF = $0.85 \times \log K_{ow}$ -0.70 = $0.85 \times 2.32 - 0.70 = 1.27$. Thus, the BCF is 19 L/kg.

3.4.1.5 Human toxicological treshold limits and carcinogenicity

Heptenophos has been classified as T; R25; N; R50/53. No international ADI has been determined by the Joint Meeting of Pesticide Residues (JMPR, 1992) or the WHO. In Germany, an ADI of 0.002 mg/kg_{bw} has been determined by the Bundesinstitut fur Risicobewertung (http://www.umwelt-online.de/recht/gefstoff/g_stoffe/adi.htm).

3.4.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\text{Log } K_{p, \text{susp-water}}$	1.71	[-]	$K_{\rm oc} \times f_{\rm oc,susp}^{1}$	K _{oc} : 3.4.1.2
BCF	19	[L/kg]		3.4.1.4
BMF	1	[-]		3.4.1.4
$\text{Log } K_{\text{ow}}$	2.32	[-]		3.4.1.2
R-phrases	T; R25; N; R50/53	[-]	http://ecb.jrc.it/esis/	3.4.1.5
A1 value	1.0	[µg/L]	total pesticides	
DW standard	0.1	[µg/L]	general value for	
			organic pesticides	

Table 31. Heptenophos: collected properties for comparison to MPC triggers.

 $^{1}f_{\text{oc,susp}} = 0.1 \text{ kg}_{\text{oc}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

• Heptenophos has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.

• Heptenophos has a log $K_{p,susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.

• Heptenophos has a BCF < 100; assessment of secondary poisoning is not triggered.

• Heptenophos has an R25; R50/53 classification. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{water, hh food}) does not need to be derived.

 For heptenophos, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440/EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.4.3 Toxicity data and derivation of ERLs for water

An overview of the selected freshwater toxicity data for heptenophos is given in Table 32. There are no marine toxicity data for heptenophos. Detailed toxicity data for heptenophos are tabulated in Appendix 2.

Table 32. Heptenophos: selected aquatic	freshwater data for ERL derivation.
---	-------------------------------------

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
Algae	25000	Algae	35000
		Crustacea	2 ^b
		Pisces	11300
		Pisces	11038 ^c

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

b Lowest value of 2, parameter mortality/immobility for *Daphnia magna*. Two values not considered equivalent due to a difference of a factor of 400.

c Geometric mean of 9300 and 13100, parameter mortality/immobility for Poecilia reticulata.

3.4.3.1 MPC_{eco,water} and MPC_{eco,marine}

The base-set is complete. The only NOEC available is for algae, which is not enough to deviate from the assessment factor of 1000. Thus, the MPC_{water,eco} is derived using the lowest LC50 (2 μ g/L for crustaceans) and is set at 2 / 1000 = 2 ×10⁻³ μ g/L.

Although no marine data are available, the MPC_{marine,eco} is also derived using this dataset and an assessment factor of 10000 and is set at $2 / 10000 = 2 \times 10^{-4} \mu g/L$.

3.4.3.2 MPC_{sp,water} and MPC_{sp,marine}

Heptenophos has a BCF < 100, thus assessment of secondary poisoning is not triggered.

3.4.3.3 MPC_{hh food,water} and MPC_{hh food,marine}

Derivation of MPC_{hh food} for heptenophos is not triggered (Table 31).

3.4.3.4 MPC_{dw,water}

The MPC_{dw,water} is 0.1 μ g/L according to the Drinking Water Standard.

3.4.3.5 Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The lowest value of the routes included is the value for direct aquatic toxicity. Therefore, the MPC_{water} is $2 \times 10^{-3} \,\mu\text{g/L}$ and the MPC_{marine} is $2 \times 10^{-4} \,\mu\text{g/L}$.

3.4.3.6 MAC_{eco}

The base-set is complete, heptenophos does not have potential to bioaccumulate. Thus, an assessment factor of 100 can be used on the lowest LC50 value to derive the $MAC_{eco,water}$, and the $MAC_{eco,water}$ becomes 2 / 100 = 0.02 µg/L. The assessment factor used can not be lowered to 10, because no data for insects are available and heptenophos is an acetylcholine esterase inhibitor. Thus, the $MAC_{eco,water}$ is set at 0.02 µg/L.

In the case of heptenophos, no acute toxicity data for specific marine taxa are available and thus an additional assessment factor of 10 is used on the MAC_{eco,water} and the provisional MAC_{eco,marine} is set at $0.02 / 10 = 2.0 \times 10^{-3} \,\mu g/L$.

3.4.3.7 NC

The negligible concentration (NC) is derived by dividing the derived MPCs by a factor of 100: $NC_{water} = 2.0 \times 10^{-5} \mu g/L.$ $NC_{marine} = 2.0 \times 10^{-6} \mu g/L.$

3.4.3.8 SRC_{eco}

A NOEC is available for algae (25000 μ g/L), and the geometric mean of the acute data is 1719 μ g/L (rejected at the 0.1 and 0.05 level but significant at all other levels using the Anderson-Darling test for normality), which is lower than the NOEC value. Thus, the SRC_{eco,water} and SRC_{eco,marine} are derived using an assessment factor of 10 on the geometric mean of the LC50s, and become 1719 / 10 = 172 μ g/L.

3.5 Mevinphos

3.5.1 Substance identification, physicochemical properties, fate and human toxicology

3.5.1.1 Identity

Figure 8. Structura	l formula o	f mevinphos.
---------------------	-------------	--------------

Parameter	Name or number
Chemical name	2-methoxycarbonyl-1-methylvinyl dimethyl phosphate or methyl 3-
	(dimethoxyphosphinoyloxy)but-2-enoate (IUPAC) or methyl 3-
	[9diemthoxyphosphinyl)oxy]-2-butenoate (Chemical Abstracts)
Common/trivial/other name	Phosdrin, Mevindrin, Duraphos
CAS number	26718-65-0
	(formerly:
	298-01-1 (E)-isomeer
	338-45-4 (Z)-isomeer
	7786-34-7 ((Z) + (E) $-isomeer$)
EC number	232-095-1
SMILES code	COC(=O)C=C(C)OP(=O)(OC)OC

3.5.1.2 Physicochemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	224.1		
Water solubility	[mg/L]	Completely	y miscible	Tomlin, 2002
p <i>K</i> a	[-]	n.a.		
$\log K_{\rm ow}$	[-]	0.127		Tomlin, 2002
		0.5	Selected from ref's	Mackay et al., 2000
		1.2	MlogP	BioByte, 2004
		0.92	ClogP	BioByte, 2004
		-0.24	EpiWin	US EPA, 2007
$\log K_{\rm oc}$	[-]	2.4	EpiWin	US EPA, 2007
		1.6	20-25 °C; soil;	Mackay et al., 2000
			selected from ref's	
		1.65	Calculated using log	According to Sabljic
			$K_{\rm ow} = 1.2$	et al., 1995
Vapour pressure	[Pa]	0.017	20 °C	Tomlin, 2002;
				Mackay et al., 2000
Melting point	[°C]	-56.1	Selected from ref's	Mackay et al., 2000;
		21	E-isomer	Tomlin, 2002
		6.9	Z-isomer	Tomlin, 2002
Boiling point	[°C]	99-103		Tomlin, 2002
Henry's law constant	$[Pa.m^3.mol^{-1}]$	6.4×10^{-6}	Calculated	Mackay et al., 2000

T I I A 4				
I ania 3/	Physicoc	nomical	nronartiae of	movinnhoe
	1 11031000	nenncai		

n.a. = not applicable.

3.5.1.3 Behaviour in the environment

Table 35. Selected environmental properties of mevinphos.

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	120	pH = 6	Tomlin, 2002
		35	pH = 7	Tomlin, 2002
		3	pH = 9	Tomlin, 2002
		1.4h	pH = 11	Tomlin, 2002
Photolysis half-life	DT50 [d]	-		
Degradability	DT50 [d]	3	Field soil; selected	Mackay et al., 2000
			from ref's	
Relevant metabolites	Dimethylphospl	hate		Fraters and Linders,
	O,O-dimethyl-2	-carboxyl-1-	methylvinylphosphate	1991
	O-methyl-2-carl	bomethoxy-1	-methylvinylphosphate	
	acetone			
	methylphosphat	e		

3.5.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for mevinphos is given in Table 36.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	3.2	EpiWin calculation using log K_{ow} of -0.24	US EPA, 2007
		2.1	Calculated using log K_{ow} of 1.2	QSAR in Veith et al., 1979
BMF	[kg/kg]	1	Default value	

Table 36. Overview	of bioaccumulation	data for mevinphos.
--------------------	--------------------	---------------------

3.5.1.5 Human toxicological treshold limits and carcinogenicity

Mevinphos has not been classified as carcinogenic to humans. Mevinphos is classified as T+; R27/28; N; R50-53. An ADI of 0.0008 mg/kg_{bw} is reported by the Joint Meeting on Pesticide Residues and the WHO (JMPR, 1992). This ADI is based on a NOAEL of 0.016 mg/kg_{bw}/d in a 30-day study in volunteers, using a 20-fold safety factor because of the small numbers in each group. This ADI is supported by a LOAEL in rats of 0.35 mg/kg_{bw}/d and NOAELs of 0.5 mg/kg_{bw}/d in rabbits and 0.25 mg/kg_{bw}/d in dogs.

3.5.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\log K_{p,susp-water}$	0.6	[-]	$K_{\rm oc} \times f_{\rm oc,susp}^{1}$	K _{oc} : 3.5.1.2
BCF	2.1	[L/kg]		3.5.1.4
BMF	1	[-]		3.5.1.4
$\log K_{\rm ow}$	1.2	[-]		3.5.1.2
R-phrases	R27/28, R50-53	[-]	http://ecb.jrc.it/esis/	3.5.1.5
A1 value	1.0	$[\mu g/L]$	total pesticides	
DW standard	0.1	$[\mu g/L]$	general value for	
			organic pesticides	
1				

Table 37. Mevinphos: collected properties for comparison to MPC triggers.

 $f_{\text{oc,susp}} = 0.1 \text{ kg}_{\text{oc}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

• Mevinphos has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.

• Mevinphos has a log $K_{p, susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.

 \circ Mevinphos has a BCF < 100; assessment of secondary poisoning is not triggered.

 Mevinphos has an R27/28 and R50-53 classification. Since BCF < 100 an MPC_{water} for human health via food (fish) consumption (MPC_{water, hh food}) does not have to be derived.

 For mevinphos, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440/EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.5.3 Toxicity data and derivation of ERLs for water

An overview of the selected freshwater toxicity data for mevinphos is given in Table 38 and for marine toxicity data in Table 39. Detailed toxicity data for mevinphos are tabulated in Appendix 2.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
No chronic data		Crustacea	58 ^b
		Crustacea	0.95
		Crustacea	0.17 ^c
		Crustacea	3.1 ^d
		Crustacea	130
		Crustacea	13 ^e
		Crustacea	0.47^{f}
		Insecta	23
		Insecta	8.8
		Insecta	5
		Pisces	2914
		Pisces	48.7 ^g
		Pisces	115
		Pisces	11.9
		Pisces	11500

Table 38. Mevinphos: selected aquatic freshwater data for ERL derivation.

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Geomean of 56 and 61, parameter mortality for Asellus brevicaudus.

^c Geomean of 0.16 and 0.18, parameter immobility for *Daphnia pulex*.

^d Geomean of 2.8 and 3.5, parameter mortality for *Gammarus fasciatus*.

^e Geomean of 12 and 13.5, parameter mortality for *Paleomonetes kadiakensis*.

^f Geomean of 0.43, 0.56, 0.42 and 0.49, parameter mortality for *Simocephalus serrulatus*.

^g Geomean of 22.5, 59, and 87, parameter mortality for *Lepomis macrochirus*.

Table 39. Mevinphos: selected aquatic marine data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
No chronic data		Crustacea	13
		Crustacea	79
		Crustacea	33
		Crustacea	150
		Pisces	65
		Pisces	640
		Pisces	140 ^b
		Pisces	75
		Pisces	320
		Pisces	300
		Pisces	800
		Pisces	74

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Geomean of 65 and 300, parameter mortality for *Fundulus heteroclitus*.

3.5.3.1 MPC_{eco,water} and MPC_{eco,marine}

The base–set (fish, *Daphnia*, and algae) is incomplete, because no data are available for algae. No chronic data are available. However, because long term toxicity data are available for similar compounds (for instance azinphos-methyl, see section 3.2.3), MPC values can be derived for mevinphos using read-across.

Read-across from azinphos-methyl shows that algae are not a sensitive species for this kind of compounds. Thus, with an assessment factor of 1000 on the lowest LC50 (0.17 μ g/L for a crustacean species), the MPC_{eco,water} is set at 0.17 / 1000 = 1.7 × 10⁻⁴ μ g/L.

For the marine environment, an assessment factor of 10000 should be used and the MPCeco, marine is thus set at $0.17 / 10000 = 1.7 \times 10^{-5} \mu g/L$.

3.5.3.2 MPC_{sp,water} and MPC_{sp,marine}

Mevinphos has a BCF < 100, thus assessment of secondary poisoning is not triggered.

3.5.3.3 MPC_{hh food,water} and MPC_{hh food,marine}

Derivation of MPC_{hh food} for mevinphos is not triggered (Table 37).

3.5.3.4 MPC_{dw,water}

The MPC_{dw,water} is 0.1 µg/L according to the Drinking Water Standard.

3.5.3.5 Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The lowest value of the routes included is the value for direct aquatic toxicity. Therefore, the MPC_{water} is $1.7 \times 10^{-4} \,\mu$ g/L and the MPC_{marine} is $1.7 \times 10^{-5} \,\mu$ g/L.

3.5.3.6 MAC_{eco}

The base-set is not complete, but algae are not the most sensitive species for this type of compounds. Furthermore, mevinphos does not have potential to bioaccumulate. It can be argued that the most sensitive taxonomic groups have been tested. Mevinphos is an acetylcholine esterase inhibitor and therefore the substance is most toxic to arthropods. Both crustaceans and insects have been tested and therefore an assessment factor of 10 seems justified in this case. Thus, an assessment factor of 10 can be used on the lowest LC50 value to derive the MAC_{eco,water}: $0.17 / 10 = 1.7 \times 10^{-2} \,\mu g/L$.

For comparative reasons (not allowed according to the Fraunhofer methodology because not all required taxa are present) an SSD was performed on the acute toxicity data for all species and for the most sensitive species (crustaceans and insects). This resulted in a HC5 of 0.70 μ g/L for all species and a HC5 of 0.30 μ g/L for the most sensitive species.

In the case of mevinphos, no toxicity data are available for specific marine taxa, and thus an additional assessment factor of 10 is used on the MAC_{eco,water} and the provisional MAC_{eco,marine} is set at $1.7 \times 10^{-2} / 10 = 1.7 \times 10^{-3} \,\mu g/L$.

3.5.3.7 NC

The negligible concentration (NC) is derived by dividing the derived MPCs by a factor of 100: $NC_{water} = 1.7 \times 10^{-6} \mu g/L.$ $NC_{marine} = 1.7 \times 10^{-7} \mu g/L.$

3.5.3.8 SRC_{eco}

No NOECs are available. The geometric mean of the LC50s is 45.7 μ g/L (significant at all levels using the Anderson-Darling test for normality). With an assessment factor of 10, this means that the SRC_{eco,water} and SRC_{eco,marine} become 45.7 / 10 = 4.6 μ g/L.

3.6 Tolclofos-methyl

3.6.1 Substance identification, physicochemical properties, fate and human toxicology

3.6.1.1 Identity

rigule 3. Siluciulai loinnula ol loiciolos-inelliyi	Figure 9.	Structural	formula of	f tolclofos-me	ethyl.
---	-----------	------------	------------	----------------	--------

/l.
1

Parameter	Name or number
Chemical name	O-2,6-dichloro-p-tolyl O,O-dimethyl phosphorothioate (IUPAC) or
	O-(2,6-dichloro-4-methylphenyl) O,O-dimethyl phosphorothioate
	(Chemical Abstracts)
Common/trivial/other name	Rizolex, Jiajilikulin
CAS number	57018-04-9
EC number	260-515-3
SMILES code	S=P(OC)(OC)Oc1c(Cl)cc(C)cc1Cl

3.6.1.2 **Physicochemical properties**

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	301.1		
Water solubility	[mg/L]	0.708		Anonymous, 2004
-		1.2	25 °C	Tomlin, 2002
		0.3	20-25 °C; selected	Mackay et al., 2000
pK _a	[-]	n.a.		
$\log K_{\rm ow}$	[-]	4.56		Anonymous, 2004;
				Tomlin, 2002
		4.77	EpiWin	US EPA, 2007
		4.86	ClogP	BioByte, 2004
		4.56	MlogP	BioByte, 2004
$\log K_{\rm oc}$	[-]	3.3	Selected from ref's	Mackay et al., 2000
		3.3	EpiWin	US EPA, 2007
		3.2-3.8		Anonymous, 2004
		3.23	Calculated using log	According to Sabljic
			$K_{\rm ow} = 4.56$	et al., 1995
Vapour pressure	[Pa]	1.82×10^{-3}	25 °C	Anonymous, 2004
		5.7×10^{-2}		Tomlin, 2002;
				Mackay et al., 2000
Melting point	[°C]	78-80		Tomlin, 2002;
				Anonymous, 2004
Boiling point	[°C]	Decompose	s before boiling	Anonymous, 2004
Henry's law constant	[Pa.m ³ .mol ⁻¹]	0.37	Calculated	Anonymous, 2004
		57.5	Calculated	Mackay et al., 2000

Table 41. Physicoc	hemical properties	of tolclo	fos-methyl.

n.a. = not applicable.

3.6.1.3 Behaviour in the environment

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	68	pH 4	Anonymous, 2004
		50	pH 7	Anonymous, 2004
		55	pH 9	Anonymous, 2004
Photolysis half-life	DT50 [d]	38.3	In water	Anonymous, 2004
		44	In water	Tomlin, 2002
		15-28	In lake and river water	Tomlin, 2002
		<2	On soil surface	Tomlin, 2002
Degradability	DT50 [d]	30	Field soil	Mackay et al., 2000
		-	Not readily biodegradable	Anonymous, 2004
		15-16	water-sediment system	Anonymous, 2004
Relevant metabolites	2,5-dichloro	2,5-dichlorocresol		Tomlin, 2002
	3,5-dichloro-4-hydroxybenzoic acid			Anonymous, 2004
	O-methyl-O-(2,6-dichloro-4-			Anonymous, 2004; Visser
	methylphenyl)phosphorothioicacid			and Linders, 1992

3.6.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for tolclofos-methyl is given in Table 43. Detailed bioaccumulation data for tolclofos-methyl are tabulated in Appendix 1.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	650	k1/k2	Anonymous, 2004
		263-1283	equilibrium method; may be based on wet weights	Tsuda et al., 1997
		210		Tsuda et al., 1992
		490	geometric mean	
BMF	[kg/kg]	2	Default value, based on log $K_{ow} = 4.56$	

Table 43. Overview of bioaccumulation data for tolclofos-methyl.

3.6.1.5 Human toxicological treshold limits and carcinogenicity

Tolclofos-methyl is not classified as carcinogenic to humans, and has the classification Xi; R43; N; R50/53. An ADI of 0.064 mg/kg was derived, based on a NOEL of 6.4 mg/kg_{bw}/day in a 2-year dietary study in mice (Anonymous, 2004).

3.6.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\log K_{p,susp-water}$	2.3	[-]	$K_{\rm oc} \times f_{\rm oc,susp}^{1}$	$K_{\rm oc}$: 3.6.1.2
BCF	489	[L/kg]		3.6.1.4
BMF	2	[-]		3.6.1.4
$\log K_{\rm ow}$	4.56	[-]		3.6.1.2
R-phrases	Xi; R43; N; R50/53	[-]	DAR	3.6.1.5
A1 value	1.0	[µg/L]	total pesticides	
DW standard	0.1	[µg/L]	general value for	
			organic pesticides	

Table 44. Tolclofos-methyl: collected properties for comparison to MPC triggers.

 $^{1} f_{\text{oc,susp}} = 0.1 \text{ kg}_{\text{oc}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

- Tolclofos-methyl has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.
- Tolclofos-methyl has a log $K_{p,susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.
- Tolclofos-methyl has a BCF > 100; assessment of secondary poisoning is triggered.
- Tolclofos-methyl has an R43; R50/53 classification. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{water, hh food}) does not have to be derived.
- For tolclofos-methyl, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440/EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.6.3 Toxicity data and derivation of ERLs for water

An overview of the selected freshwater toxicity data for tolclofos-methyl is given in Table 45. There are no marine toxicity data for tolclofos-methyl. Detailed toxicity data for tolclofos-methyl are tabulated in Appendix 2.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
Algae	32	Algae	712 ^c
Algae	261 ^b	Pisces	738 ^d
Crustacea	26		
Pisces	12		

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Geometric mean of 220 and 310, parameters biomass and growth rate, 72h, for *Scenedesmus subspicatus*.

^c Geometric mean of 780 and 650, parameter biomass for *Scenedesmus subspicatus*.

^d Geometric mean of 790 and 690, parameter mortality/immobility for Oncorhynchus mykiss.

3.6.3.1 MPC_{eco,water} and MPC_{eco,marine}

Treatment of fresh- and saltwater toxicity data

Because tolclofos-methyl is a fungicide and has a different mode of action than the other organophosphorous insecticides discussed in this report, no read-across with the other compounds can be used. According to Lepper (2005): "Freshwater effects data of plant protection products (PPP) shall normally not be used in place of saltwater data, because within trophic levels differences larger than a factor of 10 were found for several PPP. This means that for PPP the derivation of quality standards addressing the protection of water and sediment in transitional, coastal and territorial waters is not possible if there are no effects data for marine organisms available or if it is not possible to determine otherwise with high probability that marine organisms are not more sensitive than freshwater biota (consideration of the mode of action may be helpful in this assessment)." This implies that for tolclofos-methyl, freshwater and marine toxicity data cannot be combined. Because there are no marine toxicity data, the consequence is that no environmental risk limits can be derived for tolclofos-methyl in marine environments.

Derivation of MPC_{eco,water} and MPC_{eco,marine}

Acute LC50 values are only available for algae and fish. Acute values for *Daphnia magna* are above the solubility limit, so they can not be used to derive ERLs, but can be used to complete the base-set (Van Vlaardingen and Verbruggen, 2007). With NOECs available from three trophic levels (algae, *Daphnia magna* and fish), an assessment factor of 10 can be applied to the lowest NOEC (12 μ g/L for fish). This results in an MPC_{eco,water} of 12 / 10 = 1.2 μ g/L.

An MPC_{eco,marine} can not be derived since no marine toxicity data for tolclofos-methyl are available.

3.6.3.2 MPC_{sp,water} and MPC_{sp,marine}

Tolclofos-methyl has a BCF>100, thus assessment of secondary poisoning is triggered. The lowest MPC_{oral} is 3.3 mg/kg diet for mice (see Table 46). Subsequently, the MPC_{sp,water} can be calculated using a BCF of 489 and a BMF of 2 (section 3.6.1.4) and becomes $3.3 / (489 \times 2) = 3.4 \times 10^{-3} \text{ mg/L} = 3.4 \mu \text{g/L}$.

For the marine environment, an extra biomagnification factor should be used. This factor is 2 by default (see Table 43), so the MPC_{sp,marine} is $3.4 / 2 = 1.7 \mu g/L$.

Species ^a	Exposure time	Criterion	Effect concentration (mg/kg diet)	Assessment factor	MPC _{oral} (mg/kg diet)
Anas platyrhynchos	19 weeks	NOEC	500	30	17
Colinus virginianus	21 weeks	NOEC	500	30	17
Dog	6 months	NOEC	600	30	20
Dog	1 year	NOEC	400	30	13
Mouse	9 months	NOEC	100	30	3.3
Mouse	2 years	NOEC	250	30	8.3
Rabbit	13 days	NOEC	9990 ^b	300	33
Rat	32-34 days	NOEC	5000	3000	17
Rat	3 months	NOEC	1000	90	11
Rat	6 months	NOEC	3000	30	100

Table 46. Tolclofos-methyl: selected bird and mammal data for ERL derivation.

^a For detailed information see Appendix 4. Bold values are used for risk assessment.

^b based on an NOAEL of 300 mg/kg bw/day with a conversion factor of 33.3.

3.6.3.3 MPC_{hh food,water} and MPC_{hh food,marine}

Derivation of MPC hh food, water for tolelofos-methyl is not triggered (Table 44).

3.6.3.4 MPC_{dw,water}

The MPC_{water,dw} is 0.1 μ g/L according to the Drinking Water Standard.

3.6.3.5 Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The lowest value of the routes included (MPC_{eco,water}, MPC_{sp,water} and MPC_{hh food,water}) is the value for direct aquatic toxicity. Thus, for tolclofos-methyl the value of 1.2 μ g/L is selected for the MPC_{water}.

Because it was not possible to derive an MPC_{eco,marine} no MPC_{marine} can be selected.

3.6.3.6 MAC_{eco}

No useful acute toxicity data for *Daphnia* are available, because effect concentrations in all *Daphnia* studies were above the water solubility. However, the performed studies show that the acute toxicity to *Daphnia magna* is low. The chronic toxicity studies show that tolclofos-methyl is not particularly toxic to *Daphnia magna* in long term experiments either. In contrast to the other organophosphorous pesticides, tolclofos-methyl is not an insecticide but a fungicide and acts by inhibition of phospholipid biosynthesis. Therefore, it seems justified to derive a MAC_{eco} although no useful acute data for crustaceans are available. With an assessment factor of 1000 on the lowest LC50 (712 for algae), the MAC_{eco} becomes 712 / 1000 = 0.71 μ g/L.

The final decision for the height of MAC_{eco} depends on the final choice for the MPC_{water} (See discussion in 3.6.3.6). When the final MPC_{water} is indeed set at 1.2 µg/L, the MAC_{eco} value of 0.71 µg/L is lower than the MPC_{water} , and should be adjusted to be equal to the MPC_{water} (1.2 µg/L). However, when a different policy decision regarding the MPC_{water} is made, it may not be necessary to make this adjustment.

No marine toxicity data are available, and thus no MACeco for the marine environment is derived.

3.6.3.7 NC

The negligible concentration (NC) is derived by dividing the derived MPCs by a factor of 100. However, this depends on the final choice for the MPC_{water} (See discussion in 3.6.3.6). When the final MPC_{water} is set at 1.2 μ g/L, the NC_{water} is set at 1.2 / 100 = 0.012 μ g/L.

 $NC_{marine} = not derived.$

3.6.3.8 SRC_{eco}

Chronic toxicity data are available for algae, *Daphnia* and fish, the geometric mean of all chronic data is 40 μ g/L and these data are normally distributed (significant at all levels using the Anderson-Darling test for normality).Since more than three NOECs are available, it is not necessary to make a comparison with the acute toxicity data. Thus, the SRC_{eco,water} can be derived using an assessment factor of 1 and becomes 40 / 1 = 40 μ g/L.

No marine toxicity data are available, and thus no SRCeco for the marine environment is derived.

3.7 Triazophos

3.7.1 Substance identification, physicochemical properties, fate and human toxicology

3.7.1.1 Identity

Figure 10. Structural formula of triazophos.

Table 47. Identification of triazophe

Parameter	Name or number		
Chemical name	O,O-diethyl O-1-phenyl-1H-1,2,4-triazol-3-yl phosphorothioate		
	(IUPAC) or O,O-diethyl O-(1-phenyl-1H-1,2,4-triazol-3-yl)		
	phosphorothioate (Chemical Abstracts)		
Common/trivial/other name	Hostathion, Spark, Trelka, Triumph, Try, March, Deltaphos (mixtur		
	with Deltamethrin), Sherdiphos (mixture with cypermethrin and		
	dimethoate)		
CAS number	24017-47-8		
EC number	245-986-5		
SMILES code	CCOP(=S)(OCC)Oc1ncn(n1)c2ccccc2		

3.7.1.2 Physicochemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	313.3		
Water solubility	[mg/L]	39	20 °C	Tomlin, 2002
pK _a	[-]	n.a.		
$\log K_{\rm ow}$	[-]	3.34		Tomlin, 2002;
		3.55		Anonymous, 1993
		2.92	EpiWin	US EPA, 2007
		2.90	ClogP	BioByte, 2004
		3.55	MlogP	BioByte, 2004
$\log K_{\rm oc}$	[-]	2.5-2.6		Anonymous, 1993
		2.76	Calculated using log	According to Sabljic
			$K_{\rm ow} = 3.55$	et al., 1995
Vapour pressure	[Pa]	3.9×10^{-4}	30 °C	Tomlin, 2002
Melting point	[°C]	0-5		Tomlin, 2002;
				Anonymous, 1993
Boiling point	[°C]	Not determinable due to exothermic		Tomlin, 2002;
		degradation above temperatures of		Anonymous, 1993
		140 °C		
Henry's law constant	$[Pa.m^3.mol^{-1}]$	7.7×10^{-11}	Calculated using Bond	US EPA, 2007
			method; EpiWin	
		1.3×10^{-8}	Calculated using Epi	US EPA, 2007
			values, EpiWin	

 Table 48. Physicochemical properties of triazophos.

n.a. = not applicable.

3.7.1.3 Behaviour in the environment

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	3.8	50 °C; pH 5	Panman and Linders, 1991
		2.8	50 °C; pH 7	Panman and Linders, 1991
		3.5	50 °C; pH 9	Panman and Linders, 1991
Photolysis half-life	DT50 [d]		Unknown	
Degradability	DT50 [d]	<3	Water	Tomlin, 2002
		<11	Water-sediment system	Tomlin, 2002
		< 35	Water-sediment system	Anonymous, 1993
Relevant metabolites	P=O analog	ue		
	Oxytriazole			
	Ureum			

3.7.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for triazophos is given in Table 50.

Table 50. Overview of bioaccumulation data for triazophos.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	36	EpiWin calculation using log	US EPA, 2007
			$K_{\rm ow} = 2.9$	
		208	Calculated using $\log K_{\rm ow} = 3.55$	QSAR in Veith et al., 1979
BMF	[kg/kg]	1	Default value	

3.7.1.5 Human toxicological treshold limits and carcinogenicity

Triazophos is not considered to be carcinogenic to humans, and is classified as T; R23/25; Xn; R21; N; R50-53. An ADI of 0.001 mg/kg is set by the JMPR, 1992 (2002), based on a NOEL of 0.12 mg/kg in a 52 week study in dogs.

3.7.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at
				section
$\text{Log } K_{\text{p,susp-water}}$	1.5	[-]	$K_{\rm oc} \times f_{\rm oc,susp}^{1}$	$K_{\rm oc}$: 3.7.1.2
BCF	208	[L/kg]		3.7.1.4
BMF	1	[-]		3.7.1.4
$\log K_{\rm ow}$	3.55	[-]		3.7.1.2
R-phrases	T; R23/25; Xn; R21; N;	[-]	http://ecb.jrc.it/esis/	3.7.1.5
	R50/53			
A1 value	1.0	[µg/L]	total pesticides	
DW standard	0.1	$[\mu g/L]$	general value for	
			organic pesticides	

Table 51. Triazophos: collected properties for comparison to MPC triggers.

 $\frac{1}{f_{\text{oc,susp}}} = 0.1 \text{ kg}_{\text{oc}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

• Triazophos has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.

• Triazophos has a log $K_{p, susp-water} > 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.

- Triazophos has a BCF > 100; assessment of secondary poisoning is triggered.
- Triazophos has a BCF > 100 and an R21; R23/25 classification. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{water, hh food}) should be derived.

 For triazophos, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440/EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.
3.7.3 Toxicity data and derivation of ERLs for water

An overview of the selected freshwater toxicity data for triazophos is given in Table 52. There are no marine toxicity data for triazophos. Detailed toxicity data for triazophos are tabulated in Appendix 2.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (µg/L)
Cyanobacteria	2000	Cyanobacteria	12745
Cyanobacteria	5000	Cyanobacteria	13403
Cyanobacteria	1000	Cyanobacteria	6164
Algae	100	Algae	3607 ^b
Algae	1800	Algae	30117
Algae	2000	Crustacea	2.0^c
Crustacea	0.01	Pisces	1537 ^d
Pisces	0.5	Pisces	25 ^e
		Pisces	35

Table 52. Triazophos: selected aquatic freshwater data for ERL derivation.

^a For detailed information see Appendix 2. Bold values are used for risk assessment.

^b Geometric mean of 1430 and 9100, parameter biomass for *Scenedesmus subspicatus*.

^cGeometric mean of 3 and 1.3; parameter mortality/immobility for *Daphnia magna*.

^d Geometric mean of 180, 2240, and 9000, parameter mortality for Cyprinus carpio.

^e Geometric mean of 16 and 38, parameter mortality for *Oncorhynchus mykiss*.

3.7.3.1 MPC_{eco,water} and MPC_{eco,marine}

The base-set is complete. The lowest LC50 is 2.0 μ g/L for crustaceans (*Daphnia*), while the lowest NOEC is 0.01 μ g/L for crustaceans (*Daphnia*). Because long-term NOECs are available for three trophic levels, including algae, fish and *Daphnia*, and the data for the other organophosphorous insecticides have shown that not insects, but crustaceans are the most sensitive taxon, an assessment factor of 10 can be used for the MPC_{eco,water} and an assessment factor of 100 can be used for the MPC_{eco,water} of 0.01 / 10 = $1.0 \times 10^{-3} \mu$ g/L and a MPC_{eco,marine} of 0.01 / 100 = $1.0 \times 10^{-4} \mu$ g/L.

3.7.3.2 MPC_{sp,water} and MPC_{sp,marine}

Triazophos has a BCF > 100, thus assessment of secondary poisoning is triggered.

The lowest MPC_{oral} is 0.10 mg/kg diet for dogs (see Table 53). Subsequently, the MPC_{sp,water} can be calculated using a BCF of 208 and a BMF of 1 (section 3.7.1.4) and becomes $0.10 / (208 \times 1) = 4.8 \times 10^{-4}$ mg/L = 0.48 µg/L.

For the marine environment, an extra biomagnification factor should be used. But since this factor is 1 by default, the $MPC_{sp,marine}$ equals the $MPC_{sp,water}$ and is also 0.48 µg/L.

rivm

Species ^a	Exposure time	Criterion	Effect concentration (mg/kg diet)	Assessment factor	MPC _{oral} (mg/kg diet)
Chicken	3 months	NOAEL	110	30	3.7
Dog	3 months	NOAEL	9	90	0.10
Dog	1 year	NOAEL	4	30	0.13
Rabbit	14 days	NOAEL	133 ^b	300	0.44
Rat	3 months	NOAEL	20	90	0.22
Rat	2 generations	NOAEL	27	30	0.90

Table 53. Triazophos: selected bird and mammal data for ERL derivation.

^a For detailed information see Appendix 4. Bold values are used for risk assessment.

^b based on a NOEC of 4 mg/kg bw/day with a conversion factor of 33.3.

3.7.3.3 MPC_{hh food,water} and MPC_{hh food,marine}

Derivation of MPC_{hh food,water} for triazophos is triggered (Table 23). With an ADI of 1 µg/kg bw (section 3.7.1.5), a BCF of 208 and a BMF of 1 (section 3.7.1.4), the MPC_{hh food} becomes $(0.1 \times 1 \times 70) / 0.115$ = 60.9 mg/kg. Subsequently, the MPC_{hh food,water} = 60.9 / $(208 \times 1) = 0.29$ mg/L = 293 μ g/L.

For the marine environment, the MPC_{hh food,marine} is equal to the MPC_{hh food,water} and is 293 μ g/L.

3.7.3.4 MPC_{water, dw}

The MPC_{water.dw} is 0.1 µg/L according to the Drinking Water Standard.

3.7.3.5 Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The lowest value of the routes included is the value for direct aquatic toxicity. Therefore, the MPC_{water} is $1.0 \times 10^{-3} \,\mu\text{g/L}$ and the MPC_{marine} is $1.0 \times 10^{-4} \,\mu\text{g/L}$

3.7.3.6 MACeco

The base-set for the freshwater environment is complete. Normally, an assessment factor of 100 should be used, but since the BCF is larger than than 100, the assessment factor should be increased (Van Vlaardingen and Verbruggen, 2007). However, since this BCF would be primarily a problem for fish, and fish are not the most sensitive reason, this high BCF is not regarded to be enough justification to increase the assessment factor for the MAC. For this compound the mode of action may be either narcosis or AChE inhibition, because of its relatively high log K_{OW}. The data show a high variation and thus, narcosis as mode of action for all species is less likely. When the main mode of action is AChE inhibition, the most sensitive species (insects) are not present in the dataset. With the lowest L(E)C50 of 2.0 μ g/L for Crustacea, the MAC_{eco water} is set at 2 / 100 = 2.0 × 10⁻² μ g/L.

In the case of triazophos, no toxicity data are available for specific marine taxa, and thus an additional assessment factor of 10 is used on the MAC_{eco,water} and the provisional MAC_{eco,marine} is set at $2.0 \times 10^{-2} / 10 = 2.0 \times 10^{-3} \, \mu g/L.$

3.7.3.7 NC

The negligible concentration (NC) is derived by dividing the derived MPCs by a factor of 100:
$$\label{eq:constraint} \begin{split} & NC_{water} = 1.0 \times 10^{-5} \ \mu g/L. \\ & NC_{marine} = 1.0 \times 10^{-6} \ \mu g/L. \end{split}$$

3.7.3.8 SRC_{eco}

Chronic toxicity data are available for algae, *Daphnia* and fish, the geomean of all chronic data is 109 μ g/L. These data are not normally distributed (only significant at the 0.01 level using the Anderson-Darling test for normality). Because more than three NOECs are available, it is not necessary to make a comparison with the acute data. The SRC_{eco,water} and SRC_{eco,marine} can be derived using an assessment factor of 1 and are set at 109 / 1 = 109 μ g/L.

4 Conclusions

In this report, the risk limits negligible concentration (NC), maximum permissible concentration (MPC), maximum acceptable concentration for ecosystems (MAC_{eco}), and serious risk concentration for ecosystems (SRC_{eco}) are derived for azinphos-ethyl, azinphos-methyl, coumaphos, heptenophos, mevinphos, tolclofos-methyl and triazophos in water. No risk limits were derived for the sediment compartment because exposure of sediment is considered negligible.

The ERLs that were obtained are summarised in the table below. The MPC_{water} values that were set for these compounds until now, are also presented in this table for comparison reasons.

Environmental	Azinphos- ethyl	Azinphos- methyl	Coumaphos	Heptenophos	Mevinphos	Tolclofos- methyl	Triazophos
Old MPC _{water}	1.1×10^{-2}	0.012	7×10^{-4}	0.02	2×10^{-3}	0.790	0.032
MPC _{eco.water}	6.5×10^{-3}	2.0×10^{-3}	3.4×10^{-3}	2.0×10^{-3}	1.7×10^{-4}	1.2	1.0×10^{-3}
MPC _{dw.water}	0.1	0.1	0.1	0.1	0.1	0.1	0.1
MPC _{sp,water}	0.51	n.d. ^b	0.075	n.d. ^b	n.d. ^b	3.4	0.48
MPC _{hh food,water}	n.d. ^b	n.d. ^b	340	n.d. ^b	n.d. ^b	n.d. ^b	293
MPC _{water}	6.5×10^{-3}	2.0×10^{-3}	3.4×10^{-3}	2.0×10^{-3}	1.7×10^{-4}	1.2 ^c	1.0×10^{-3}
MPC _{eco,marine}	1.3×10^{-3}	4.0×10^{-4}	6.8×10^{-4}	2.0×10^{-4}	1.7×10^{-5}	n.d. ^b	1.0×10^{-4}
MPC _{sp,marine}	0.51	n.d. ^b	0.075	n.d. ^b	n.d. ^b	1.7	0.48
MPC _{hh} food,marine	n.d. ^b	n.d. ^b	340	n.d. ^b	n.d. ^b	n.d. ^b	293
MPC _{marine}	1.3×10^{-3}	4.0×10^{-4}	6.8×10^{-4}	2.0×10^{-4}	1.7×10^{-5}	n.d. ^b	1.0×10^{-4}
NC _{water}	6.5×10^{-5}	2.0×10^{-5}	3.4×10^{-5}	2.0×10^{-5}	1.7×10^{-6}	0.012	1.0×10^{-5}
NC _{marine}	1.3×10^{-5}	4.0×10^{-6}	6.8×10^{-6}	2.0×10^{-6}	1.7×10^{-7}	n.d. ^b	1.0×10^{-6}
MAC _{eco,water}	1.1×10^{-2}	0.014	3.4×10^{-3}	0.02	1.7×10^{-2}	1.2 ^c	2.0×10^{-2}
MAC _{eco,marine}	1.1×10^{-3c}	2.8×10^{-3c}	6.8×10^{-4c}	2.0×10^{-3c}	1.7×10^{-3c}	n.d. ^b	2.0×10^{-3c}
SRC _{eco,water}	1.1	4.8	4.5	172	4.6	40	109
SRC _{eco,marine}	1.1	4.8	4.5	172	4.6	n.d.	109

Table 54. Derived MPC, NC, MAC, and SRC values (in µg/L).

^a subscript water = freshwater; subscript marine = marine waters; $MPC_{eco} = MPC$ based on ecotoxicological data; MPC_{dw}

= MPC based on human consumption of drinking water; $MPC_{sp} = MPC$ based on secondary poisoning; $MPC_{hhfood} =$

MPC based on human consumption of fish.

^b n.d. = not derived due to a lack of data.

^c provisional value, for further information see the methods paragraph

References

- Anonymous. 1993. Evaluation on: Triazophos. Kings Pool, York, Great Britain: Department for Environment, Food and Rural Affairs, Pesticides Safety Directorate.
- Anonymous. 1996. Monograph Azinphos-methyl. European Union
- Anonymous. 2004. Draft assessment report tolclofos-methyl. European Union.
- BioByte. 2004. BioLoom [computer program]. version 1.0 (ClogP 4.0). Claremont, CA, USA: BioByte Corporation.
- Bowman BT, Sans WW. 1985. Effect of temperature on the water solubility of insecticides. J Environ Sci Health B20: 625-631.
- De Bruijn J, Hermens J. 1993. Inhibiton of acetylcholinesterase and acute toxicity of organophosporous compounds to fish: a preliminary structure-activity analysis. Aquat Toxicol 24: 257-274.
- Deneer JW, Budde BJ, Weijers A. 1999. Variations in the lethal body burdens of organophosphorus compounds in the guppy. Chemosphere 38: 1671-1683.
- Dortland RJ. 1980. Toxicological evaluation of parathion and azinphosmethyl in freshwater model ecosystems. Wageningen: University of Wageningen.
- European Commission (Joint Research Centre). 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra, Italy: European Chemicals Bureau, Institute for Health and Consumer Protection. Report no. EUR 20418 EN/2.
- Finizio A, Vighi M, Sandroni D. 1997. Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere 34: 131-161.
- Fraters D, Linders J. 1991. Adviesrapport Mevinphos. Bilthoven, the Netherlands: RIVM (National Institute for Public Health and the Environment). Letter report RIVM-SEC no. 88/678801/073.
- Freitag D, Ballhorn L, Geyer H, Korte F. 1985. Environmental hazard profile of organic chemicals. Chemosphere 14: 1589-1616.
- Giddings JM, Biever RC, Helm RL, Howick GL, DeNoyelles FJ. 1994. The fate and effects of guthion (azinphos methyl) in mesocosms. In: Graney RL, Kennedy JK, Rodgers JH, eds. Simulated field studies in aquatic ecological risk assessment. Boca Raton, USA: Lewis Publishers. p. 469-496.
- IUCLID, 2000. http://ecb.jrc.it/esis/
- JMPR. 2002. Inventory of IPCS and other WHO pesticide evaluations and summary of toxicological evaluations performed by the Joint Meeting on Pesticide Residues (JMPR) - Evaluations through 2002. Geneva, Switzerland: WHO Joint Secretary of the Joint Meeting on Pesticide Residues.
- Klimisch HJ, Andreae M, Tillman U. 1997. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25: 1-5.
- Knuth ML, Anderson LE, Heinis LJ, Hicks RE, Jarvinen AW, Lozano SJ, O'Halloran SL, Patzer JA, Seelke RW, Siefert RE, Sierzen ME, Stay FS, Tanner DK. 1992. Effects, persistence and distribution of azinphos-methyl in littoral enclosures. U.S. EPA, Environmental Research Laboratory-Duluth, Ecosystem Response Branch, Duluth, MN55804.
- Lartiges SB, Garrigues PP. 1995. Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental conditions. Environ Sci Technol 29: 1246-1254.
- Lepper P. 2005. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). 15 September 2005 (unveröffentlicht) ed. Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.
- Mackay D, Shiu WY, Ma KC. 2000. Physical-chemical properties and environmental fate. Handbook.

Chapman and Hall/ CRCnetBase.

- Maltby L, Blake N, Brock TCM, Van den Brink PJ. 2005. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24: 379-388.
- Mayer FL. 1986. Acute toxicity handbook of chemicals to estuarine organisms. Gulf Breeze, FL, USA: Environmental Protection Agency.
- Mayer FLJr, Ellersieck MR. 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resource Publication 160. Washington, D.C., USA: United States Department of the Interior. Fish and Wildlife Service. 579 pp.
- Ohayo-Mitoko GJA, Deneer JW. 1993. Lethal body burdens of four organophosphorus pesticides in the guppy (Poecilia reticulata). Sci Total Environ Suppl Pt 1: 659-665.
- Panman E, Linders J. 1990. Adviesrapport Azinphos-methyl. Bilthoven, the Netherlands: RIVM (National Institute for Public Health and the Environment). Letter report RIVM-SEC no. 88/678801/068.
- Panman E, Linders J. 1991. Adviesrapport Triazophos. Bilthoven, The Netherlands: RIVM (National Institute for Public Health and the Environment). Letter report RIVM-SEC no. 88/678801/082.
- Panman E, Linders J. 1992. Adviesrapport Heptenophos. Bilthoven, The Netherlands: RIVM (National Institute for Public Health and the Environment). Letter report RIVM-SEC no. 88/678801/076.
- Pesticide Management Regulatory Agency. 2003. Re-evaluation of Coumaphos. Ottawa, Canada: Health Canada.
- Sabljic A, Güsten H, Verhaar H, Hermens J. 1995. QSAR modelling of soil sorption. Improvements and systematics of log Koc versus log Kow correlations. Chemosphere 31: 4489-4514.
- Stay FS, Jarvinen AW. 1995. Use of microcosm and fish toxicity data to select mesocosm treatment concentrations. Arch Environ Contam Toxicol 28: 451-458.
- Tanner DK, Knuth ML. 1995. Effects of azinphos-methyl on the reproductive success of the bluegill sunfish, *Lepomis macrochirus*, in littoral enclosures. Ecotoxicol Environ Saf 32: 184-193.
- Tomlin CDS. 2002. e-Pesticide Manual 2002-2003 (Twelfth edition) Version 2.2. British Crop Protection Council.
- Tsuda T, Aoki S, Kojima M, Fujita T. 1992. Accumulation and excretion of pesticides used in golf courses by carp (*Cyprinus carpio*) and willow shiner (*Gnathopogon caerulescens*). Comp Biochem Physiol 101C: 63-66.
- Tsuda T, Kojima M, Harada H, Nakajima A, Aoki S. 1997. Relationships of bioconcentration factors of organophosphate pesticides among species of fish. Comp Biochem Physiol 116C: 213-218.
- US EPA. 2000. Reregistration Eligibility Decision Addendum and FQPA Tolerance Reassessment Progress Report Coumaphos. Washington DC, USA: US EPA, Office of prevention, pesticides and toxic substances.
- U.S. EPA. 2007. EPI Suite[™] [computer program]. version 3.2. Washington, DC, U.S.A.: U.S. Environmental Protection Agency (EPA) Office of Pollution Prevention Toxics and Syracuse Research Company (SRC).
- Van Wijngaarden RPA, Brock TCM, Van den Brink PJ. 2005. Threshold levels for effects of insecticides in freshwater ecosystems: A review. Ecotoxicology 14: 355-380.
- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS). Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601501031.
- Veith GD, DeFoe DL, Bergstedt BV. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish Res.; 36, 1040-1048.
- Visser JT, Linders J. 1992. Adviesrapport Tolclofos-methyl. Bilthoven, The Netherlands: Letter report RIVM-SEC no. 90/670101/018. 46 pp.

Appendix 1. Information on bioconcentration

Table A1.1. Azinphos-ethyl Table A1.2. Azinphos-methyl Table A1.3. Coumaphos Table A1.4. Tolclofos-methyl

Table A1.1 Bioconcentration data for Azinphos-ethyl.

					[IIIg/L]	յլ	լսյ	[°C]	LJ								
Poecilia reticulata 2-3mo; 10-140mg 98 Y R 7-8.6 100 22 11 0.028l 135.7 Equi 1 Deneer et al., 1999	1999 4	Deneer et al., 1999	Equi 1	135.7 Eo	0.028 1	1 0	11	22		100	-8.6	7-8	R	Y	98	2-3mo; 10-140mg	Poecilia reticulata

a According to Klimisch et al., 1997

Notes:

1 Well performed study; only to be used as an indicative value due to the use of lethal body burdens. Only the values determined at the lowest, more realistic concentrations are reported.

Table A1.2 Bioconcentration data for azinphos-methyl.

1 41610 1 1	HE BIOGONIOUNIAA	i data ioi dei	npillee lillet	. <u>j</u>										
Species	Species properties	Substance purity	Analysed	Test type	рН	Hardness [mg CaCO ₃ /L]	Tempe- rature [°C]	Exposure time [d]	Exposure concentration [mg/L]	BCF [l/kg]	BCF type	Notes	Reference	Reliability index ^a
Poecilia reticulata	2-3mo; 10-140mg	99	Y	R	7-8.6	100	22	6	0.82	34.9	Equi	1	Deneer et al., 1999	4

a According to Klimisch et al., 1997

Notes:

1 Well performed study; only to be used as an indicative value due to the use of lethal body burdens.

Table A1.3. Bioconcentration data for coumaphos.

Species	Species properties	Substance purity	Analysed	Test type	рН	Hardness [mg	Tempe- rature	Exposure time	Exposure concentration	BCF [l/kg]	BCF type	Notes	Reference	Reliability index ^a
Lepomis macrochirus Leuciscus idus melanotus	1.5g	>98	Y	F S	7	0a003/L]	20-25	30 4	0.01 0.05	541 110	Equi	1 2	US EPA, 2000 Freitag et al, 1985	2 2

a According to Klimisch et al., 1997

Notes:

Radioactivity method; material balance was not complete and residues in water were not characterized; majority of coumaphos residues 1 extracted from tissues was not identified. ¹⁴C measurements in fish and water; not clear if equilibrium is reached after 4 days.

2

Table A1.4. Bioconcentration data for tolclofos-methyl.

Species	Species properties	Substance purity	Analysed	Test type	рН	Hardness [mg CaCO₃/L]	Tempe- rature [ºC]	Exposure time [d]	Exposure concentration [mg/L]	BCF [l/kg]	BCF type	Notes	Reference	Reliability index ^a
Carassius auratus	0.56-0.8g	>97	Y	CF	6.9-7	45-46	23	7	0.0016-0.002	263	equi	1,2	Tsuda et al., 1997	3
Lebistes reticulatus	female; 0.26-0.40 g	>97	Y	CF	6.9-7	45-46	23	7	0.0016-0.002	690	equi	1,3	Tsuda et al., 1997	3
Lebistes reticulatus	male; 0.26-0.40 g	>97	Y	CF	6.9-7	45-46	23	7	0.0016-0.002	1283	equi	1,4	Tsuda et al., 1997	3
Oryzias latipes	0.11-0.26g	>97	Y	CF	6.9-7	45-46	23	7	0.0016-0.002	720	equi	1,5	Tsuda et al., 1997	3
Tanichthys albonubes	0.06-0.09g	>97	Y	CF	6.9-7	45-46	23	3	0.0016-0.002	291	equi	1,6	Tsuda et al., 1997	3
Cyprinus carpio	14-22g	>98	Y	CF	6.7-6.9	36-38	25	14	0.00054	210	equi	7	Tsuda et al., 1992	2
Lepomis macrochirus	3.4g; 47 mm	97.7	Y	CF	8.0-8.2		22	28	0.003	670	equi	8	Anonymous, 2004	2
Lepomis macrochirus	3.4g; 47 mm	97.7	Y	CF	8.0-8.2		22	28	0.003	650	k1/k2	8	Anonymous, 2004	2

a According to Klimisch et al., 1997

- 1 Probably based on wet weights but not explicitly mentioned
- 2 Lipid content is 2.7%
- 3 Lipid content is 5.7%
- 4 Lipid content is 4.7%
- 5 Lipid content is 2.2%
- 6 Lipid content is 1.8%
- 7 Kout is also calculated. It was not possible to calculate a K_{in} from the given data.
- 8 steady state after 7 days; CT50 = 1.1 d; 14 d depuration; fish were fed during the study; ¹⁴C method

Appendix 2. Detailed aquatic toxicity data

Table A2.1. Acute toxicity of azinphos-ethyl to freshwater organisms. Table A2.2. Acute toxicity of azinphos-ethyl to marine organisms. Table A2.3. Chronic toxicity of azinphos-ethyl to freshwater organisms. Table A2.4. Acute toxicity of azinphos-methyl to freshwater organisms. Table A2.5. Chronic toxicity of azinphos-methyl to freshwater organisms. Table A2.6. Acute toxicity of azinphos-methyl to marine organisms. Table A2.7. Chronic toxicity of azinphos-methyl to marine organisms. Table A2.8. Acute toxicity of coumaphos to freshwater organisms. Table A2.9. Chronic toxicity of coumaphos to freshwater organisms. Table A2.10. Acute toxicity of coumaphos to marine organisms. Table A2.11. Chronic toxicity of coumaphos to marine organisms. Table A2.12. Acute toxicity of heptenophos to freshwater organisms. Table A2.13. Acute toxicity of heptenophos to marine organisms. Table A2.14. Acute toxicity of mevinphos to freshwater organisms. Table A2.15. Chronic toxicity of mevinphos to freshwater organisms. Table A2.16. Acute toxicity of mevinphos to marine organisms. Table A2.17. Acute toxicity of tolclofos-methyl to freshwater organisms. Table A2.18. Acute toxicity of tolclofos-methyl to marine organisms. Table A2.19. Acute toxicity of triazophos to freshwater organisms. Table A2.20. Acute toxicity of triazophos to marine organisms.

Table A2.1. Acute toxicity of azinphos-ethyl to freshwater organisms.

Species	Species proper-ties	Purity	Α	Test	Test	pН	т	НН	Exp.	Criterion	Test	Value	Notes	Reference	Reliability
		[%]		type	water		[ºC]	[mg CaCO₃/L]	time		endpoint	[ug/l]			index ^a
Mollusca															
Pomacea canaliculata				S	tw				48h	LC50	mortality	3082	1	Tejada et al., 1994	2
Crustacea															
Daphnia magna	1st instar	88		S	rw	7.1	21	44	48h	EC50	immobility	4		Mayer and Ellersieck, 1986	2
Daphnia magna	4th instar		Ν				27		24h	LC50	mortality	0.95	2	Gaboub et al., 1973	3
Daphnia pulex	< 24h		Ν	S	rw	7.4-7.8	16	47	48h	EC50	immobility	3.2		Sanders and Cope, 1966	2
Daphnia pulex	1st instar	88		S	rw	7.1	15	44	48h	EC50	immobility	3.2		Mayer and Ellersieck, 1986	4*
Daphnia pulex							21		48h	EC50	immobility	3	3	Cope, 1966	4
Simocephalus serrulatus	<24h		Ν	S	rw	7.4-7.8	16	47	48h	EC50	immobility	4.2		Sanders and Cope, 1966	2
Simocephalus serrulatus	<24h		Ν	S	rw	7.4-7.8	21	47	48h	EC50	immobility	4		Sanders and Cope, 1966	2
Simocephalus serrulatus	1st instar	88		S	rw	7.1	15	44	48h	EC50	immobility	4.2		Mayer and Ellersieck, 1986	4*
Simocephalus serrulatus							21		48h	EC50	immobility	4		Cope, 1966	4*
Insecta															
Culex ppiens fatigans	4th instar		Ν				27		24h	LC50	mortality	8	2	Gaboub et al., 1973	3
Pteronarcys californica	2nd year	88		S	rw	7.1	15	44	96h	LC50	mortality	1.5		Mayer and Ellersieck, 1986	2
Pteronarcvs californica	Nymph						16		96h	LC50	mortality	2		Cope, 1965	4
Pteronarcys californica	Nymph						21		48h	EC50		8	3	Cope, 1966	4
Pisces															
Cyprinus carpio	Adult			s	nw				96h	LC50	mortality	50		Mulla et al., 1967	4
Cyprinus carpio	'vounger' than adults: 217g		S	-					24h	LC50	mortality	1-5	4	Mulla et al., 1967	3
Lepomis macrochirus	0.8 g	88		S	rw	7.1	24	44	96h	LC50	mortality	1.1		Maver and Ellersieck, 1986	2
Lepomis macrochirus	0.8a	ta					24		48h	LC50	mortality	1.4		Cope, 1963	2
Lepomis macrochirus		-5					24		48h	EC50		2	3	Cope, 1966	4
Oncorhynchus mykiss	1.4 a	88		S	rw	7.1	13	44	96h	LC50	mortality	20		Mayer and Ellersieck, 1986	2
Oncorhynchus mykiss	1.4a	ta		-			13	-	96h	LC50	mortality	19		Cope, 1965	2
Oncorhynchus mykiss	5						13		48h	EC50		23	3	Cope, 1966	4
Poecilia reticulata	1 inch			S	tw				48h	LC50	mortality	20	1.5	Teiada et al., 1994	4
Oreochromis niloticus	2wk, 1 inch		S						48h	LC50	mortality	0.001	1,6	Tejada et al., 1994	3

a According to Klimisch et al., 1997

- 1 LC50 expressed as active ingredient
- 2 Badly described study, only gusathion is mentioned but not azinphos-ethyl
- 3 Review article; measured at US Bureau of sport Fisheries and Wildlife
- 4 15g fish/liter
- 5 Data from review article without further detail
- 6 Value does not seem correct.

Table A2.2. Chronic toxicity of azinphos-ethyl to freshwater organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	T [⁰C]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^ª
Protozoa															
											Number of				
Colpidium amylum				S	am				43h	MAD	organisms	>10000	1,2,3	Dive et al., 1980	3

a According to Klimisch et al., 1997

Notes:

1 >2 times above solubility limits.

2 Minimal Active dose is calculated according to Dive and Leclerc, 1975.

3 Ciliates were kept in a bacterial suspension

Table A2.3. Acute toxicity of azinphos-ethyl to marine organisms.

Species	Species proper-	Purity	A	Test	Test pH	T	Salinity	Exp.	Criterion	Test	Value	Notes	Reference	Reliability
	ties	[%]		type	water	[ºC]	[‰]	time		endpoint	[ug/l]			index"
Crustacea														
Artemia sp.	neonates	>95%	N	S	rw	25	33	24h	LC50	immobility	3300	1	Guzzella et al., 1997	3
Penaeus monodon	10-20g; juvenile	40%	N	S	nw	26-28	30-33.5	96h	LC50	mortality	48	2,3	Baticados and Tendencia, 1991	2
										shell				
Penaeus monodon	10-20g; juvenile	40%	Ν	S	nw	26-28	30-33.5	96h	LOEC	softening	30	2,4	Baticados and Tendencia, 1991	2
										-				
Rotifers														
Brachionus plicatilis	neonates	>95%	Ν	S	rw	25	33	24h	LC50	immobility	>5200	1,5	Guzzella et al., 1997	3
										-				

a According to Klimisch et al., 1997

Notes:

1 Result may have been a 1000 times lower because other compounds in the study appear to have been tested far beyond their solubility limits

2 Original results were given in mg/l Gusathion A. Results were recalculated assuming 40% of Gusathion A is azinphos-ethyl, as reported in the article.

3 Original LC50 = 120 ug/L.

4 Original LOEC = 75 ug/L.

5 Above solubility limits

Table A2.4. Acute toxicity of azinphos-methyl to freshwater organisms.

Species	Species proper-	Purity	Α	Test	Test	рΗ	т	НН	Exp.	Criterion	Test	Value	Notes	Reference	Reliability
	ties	[%]		type	water	P	[ºC]	[mg CaCO₃/L]	time		endpoint	[ug/l]			index ^a
Algae								· · ·							
											O2			Van der Heever and Grobbelaar,	
Chlorella vulgaris			N	S	am		23		30min	NOEC	production	>1000	1	1997	2
Scenedesmus subspicatus		92.5	Ν	S	am		~~		96h	EC50	growth rate	6650	2	Panman and Linders, 1990	2
Scenedesmus subspicatus		4		~			23		96h	EC50		7150	3	IUCLID, 2000	4
Scenedesmus subspicatus		tg	N	S					96N	EC50		3610	3	Anonymous, 1996	4
Rooudokirobnoriallo auboonitata			N	6	o m	7 5	22		1h	NOEC	fluorococco	>1000	1		2
r seudokirchinenena subcapitata			IN	3	am	1.5	25		411	NOLC		21000		Van der Heever and Grobbelaar	2
Pseudokirchneriella subcapitata			Ν	S	am		23		30min	NOEC	production	>1000	1	1997	2
Mollusca															
Anlexa hypnorum	Adult		Y	CE	nw	74	17	44 7	96h	1.050	mortality	>3690	6	Holcombe et al 1987	1
Riomphalaria dlabrata	adult 18mm 0.8a	98.3	N	S	dtw	7	22	67	96h	NOEC	movement	>15000	7	Kristoff et al. 2006	2
Biomphalana glabiata	addit, Tomini, 0.09	00.0		0	atw	1	~~	01	5011	NOLO	movement	- 10000	'		2
Crustacea															
Asellus brevicaudus	mature	93		S	rw	7.1	15	44	96h	LC50	mortality	21		Mayer and Ellersieck, 1986	2
Asellus brevicaudus	mature	tg	Ν	S	rw	7.1	21	47	96h	LC50	mortality immobility/mo	21		Sanders, 1972	4*
Asellus aquaticus	5.0mm	aq	Ν	S	am		18	163.9	48h	LC50	rtality	4.8		Dortland, 1980	2
		- J									immobilizatio			,	
Daphnia magna	1st instar	90.6	Ν	S	am				48h	LC50	n/mortality	1.1		Panman and Linders, 1990	2
											immobility/mo				
Daphnia magna	<24h	ag	Ν	S	am		18	163.9	48h	LC50	rtality	1.6		Dortland, 1980	2
	<u></u>			~			4.0				immobility/mo				•
Daphnia magna	<24h	ag	N	S	am	7.0	18	163.9	48h	LC50	rtality	1.5	•	Dortland, 1980	2
Daphnia magna	<24n		N	S	am	7.9	19	202	260	LC50	mortality	0.18	8	Frear and Boyd, 1967	2
Daphnia magna		ta	N	0			20		4011	EC50	immobility	1.1		Aponymous 1006	4
Daphnia magna Daphnia magna		19 50	V	F					4011 48h	EC50	immobility	1.1	٥	Anonymous 1990	4
Daphnia magna Daphnia magna		23.8	v	F					4011 //8h	EC50	immobility	4.4 6.7	9	Anonymous 1990	2
Echinogammarus tibaldii	mature	20.0 99	N	S	rw	79	8	240	96h	1050	immobility	0.48	3	Pantani et al 1997	2
Gammarus fasciatus	mature	93		s	rw	7.0	21	44	96h	LC50	mortality	0.40		Mayer and Ellersieck 1986	2
Gammarus fasciatus	mature	93		ŝ	rw	7.4	15	272	96h	LC50	mortality	0.1		Mayer and Ellersieck, 1986	2
Gammarus fasciatus	mature	ta	Ν	S	rw	7.1	21	47	96h	LC50	mortality	0.38	10	Sanders, 1972	2
Gammarus fasciatus	mature	tg	Ν	S	nw	7.4	21	'Hoog'	96h	LC50	mortality	0.1	10	Sanders, 1972	4*
Gammarus italicus	mature	99	Ν	S	rw	7.9	8	240	96h	LC50	immobility	0.24		Pantani et al., 1997	2
Gammarus italicus	mature		Ν	S	rw	8.1	8	240	24h	LC50	immobility	0.988	8	Pantani et al., 1990	2
Gammarus lacustris			Ν	S	rw	7.1	21	47	96h	LC50	mortality	0.15	8	Sanders, 1969	2
											immobility/mo				
Gammarus lacustris				S			15		96h	LC50	rtality	0.126	8	Nebeker and Gaufin, 1964 Dortland, 1980: Pimentel,	4*
Gammarus lacustris									48h	EC50	immobility	0.3	8	1971/1972.	4
Gammarus lacustris	mature		Ν	S	nw		15		96h	LC50	mortality	0.126	8,10,11	Gaufin et al., 1965	2
Hyalella azteca	7-14d	>95	Ν	S	nw	7.4-8.5	23	42-47	96h	LC50	mortality	0.29		Ankley and Collyard, 1995	2
Palaemonetes kadiakensis	mature	93		F	rw	7.4	21	272	96h	LC50	mortality	1.2		Mayer and Ellersieck, 1986	2
Palaemonetes kadiakensis	mature	tg	Ν	S	nw	7.4	21	'Hoog'	96h	LC50	mortality	0.13	10	Sanders, 1972	2
Palaemonetes kadiakensis	mature	tg	N	F	nw	7.4	21	'Hoog'	96h	LC50	mortality	1.2	10	Sanders, 1972	4*

	susceptible														
Palaemonetes kadiakensis	population	tg	N	S	tw	7.4	24	24	24h	LC50	mortality	8.9		Naqvi and Ferguson, 1970	2
	resistant														
	population														
Palaemonetes kadiakensis	(Hollandale)	tg	N	S	tw	7.4	24	24	24h	LC50	mortality	16.8		Naqvi and Ferguson, 1970	2
	resistant														
	population														
Palaemonetes kadiakensis	(Belzoni)	tg	N	S	tw	7.4	24	24	24h	LC50	mortality	10.5		Naqvi and Ferguson, 1970	2
	resistant	-									-				
	population (Sky														
Palaemonetes kadiakensis	Lake)	tg	N	S	tw	7.4	24	24	24h	LC50	mortality	4.4		Nagvi and Ferguson, 1970	2
Procambarus sp.	immature	93		S	rw	7.5	12	44	96h	LC50	mortality	56		Mayer and Ellersieck, 1986	2
Procambarus acutus acutus	0.7g		N	S	tw	7	26		96h	LC50	mortality	40	8,11,12	Carter and Graves, 1972	3
Insecta															
Acroneuria pacifica	naiads: 2-2.5 cm	89	Y	S	nw	7.8-8.2	12.8		96h	LC50	mortality	8.5	7,10,13	Jensen and Gaufin, 1966	4*
Acroneuria pacifica	naiads: 2-2.5 cm	89	Y	CF	nw	7.8-8.2	12.8		96h	LC50	mortality	2	7,10,13	Jensen and Gaufin, 1966	2
Acroneuria pacifica	naiads: 2-2.5 cm	92	N	S	nw	7.9-8.3	11.5	120-210	96h	LC50	mortality	8.5	10	Jensen and Gaufin, 1964	2
Acroneuria pacifica	naiads: 2-2.5 cm		N	S	nw		11-12		96h	LC50	mortality	8.5	8,10,11	Gaufin et al., 1965	4*
Aedes aegypti	3rd instar	ag	N	S	dw	6.3			24h	LC50	mortality	25	14	Lichtenstein et al., 1966	4
Baetis sp.		cf	Y	CF	nw	7	11		30min	LOEC	activity	0.2	7,13,15	Schulz and Dabrowski, 2001	3
Chironomus plumosus	4th instar		N	S			20		120h	LC50	mortality	1.04	2,16,17	Hilsenhoff, 1959	3
Chironomus tentans	3rd instar	>95	N	S	nw	7.4-8.5	23	42-47	96h	LC50	mortality	0.37	18	Ankley and Collyard, 1995	3
Cloeon dipterum	6.2mm	ag	N	S	am		18	163.9	48h	LC50	mortality	13.3		Dortland, 1980	2
Cloeon dipterum	6.0mm	aq	Ν	S	am		18	163.9	48h	LC50	mortality	12		Dortland, 1980	2
Ephemerella grandis	nymph	U U	N	S	nw		9-10		96h	LC50	mortality	14	8,10,11	Gaufin et al., 1965	2
Pteronarcys californica	2nd year class	93		S	rw	7.1	15	44	96h	LC50	mortality	1.9		Mayer and Ellersieck, 1986	2
Pteronarcys californica	2-5 cm	tg	Y	S	nw	7.8-8.2	12.8		96h	LC50	mortality	22	7,10,13	Jensen and Gaufin, 1966	4*
Pteronarcys californica	2-5 cm	tq	Y	CF	nw	7.8-8.2	12.8		96h	LC50	mortality	4.6	7,10,13	Jensen and Gaufin, 1966	2
Pteronarcvs californica	4-6cm	92	Ν	S	nw	7.9-8.3	11.5	120-210	96h	LC50	mortality	22		Jensen and Gaufin, 1964	2
····											· · · · ,			Uit Dortland, 1980: Pimentel.	
Pteronarcvs californica									48h	EC50		8		1971/1972	4
Pteronarcys californica	naiads: 2-2.5 cm		Ν	S	nw		11-12		96h	LC50	mortality	22	8.10.11	Gaufin et al., 1965	4*
Pteronarcys californica	naiads: 30-35mm	ta	N	ŝ	rw	71	15.5	47	96h	LC50	mortality	15	-,,.	Sanders and Cope 1968	2
Xanthocnemis zealandica	13th instar	100	N	ŝ	tw	8	15	48	48h	1 C 50	mortality	45 1		Hardersen and Wratten 2000	2
Xanthocnemis zealandica	12th instar	100	N	ŝ	tw	8	15	48	48h	1050	mortality	32.2		Hardersen and Wratten 2000	2
Xanthocnemis zealandica	11th instar	100	N	ŝ	tw	8	15	48	48h	LC50	mortality	33.1		Hardersen and Wratten 2000	2
Xanthocnemis zealandica	9th instar	100	N	ŝ	tw	8	15	48	48h	1050	mortality	30.2		Hardersen and Wratten 2000	2
Xanthocnemis zealandica	7th instar	100	N	š	tw	8	15	48	48h	1 C 50	mortality	26.6		Hardersen and Wratten 2000	2
Xanthocnemis zealandica	2nd instar	100	N	ŝ	tw	8	15	48	48h	1 C 50	mortality	50.2		Hardersen and Wratten 2000	2
	2.10 1.1010.1			0		•		10		2000	montanty	00.2			-
Plathyhelminthes (Turbellaria)															
Dugesia lugubris		ag	Ν	S	am		18	163.9	96h	LC50	mortality	>160		Dortland, 1980	2
A															
Annelida		4-		~	الله				705	1.050	an e at e lite e	-5000	45 40	Nami 1072	0
Branchiura sowerbyi		ıg	N	5	atw		4.4		72n	LC50	rnortality	<5000	15,19	Naqvi, 1973	2
Branchiura sowerbyi		tg	N	S	dtw		21		72h	LC50	mortality	<5000	15,19	Naqvi, 1973	2
Branchiura sowerbyi		τg	N	S	dtw		32.2		/2h	LC50	mortality	<5000	15,19	Naqvi, 1973	2
Herpopdella octoculata		ag	N	S	am	_	18	163.9	96h	LC50	mortality	>160		Dortiand, 1980	2
Lumbriculus variegatus	adult, 3.5cm	98.3	N	S	dtw	7	22	67	96h	LOEC	movement	<1	7,20	Kristoff et al., 2006	2
I ubitex tubitex		tg	N	S	tw	7.8	24	28	72h	NOEC		> 1000	14	Naqvi and Ferguson, 1968	3

Pisces															
Carassius auratus	0.9a	93		S	rw	7.1	18	44	96h	LC50	mortality	4270		Maver and Ellersieck. 1986	4*
Carassius auratus	2.37a: 33.9mm	93	Y	R	rw	7.2	24.8	<220	96h	LC50	mortality	2230	13	Adelman and Smith, 1976	1
Carassius auratus	2.51g: 34.1mm	93	Ý	R	rw	7.18	24.4	<220	96h	LC50	mortality	2180	13	Adelman and Smith, 1976	1
Carassius auratus	1 75g: 30 3mm	93	Ŷ	R	rw	7 31	25.1	<220	96h	LC50	mortality	2680	13	Adelman and Smith 1976	1
Carassius auratus	1 69g; 29 6mm	93	Ŷ	R	rw	7 31	25	<220	96h	LC50	mortality	2450	13	Adelman and Smith 1976	1
Carassius auratus	1 87g: 32 3 mm	93	Ŷ	R	rw.	7 34	24.7	<220	96h	1.050	mortality	2480	13	Adelman and Smith, 1976	1
Carassius auratus	1 87g: 32 3mm	93	Ý	R	rw.	7 39	24.7	<220	96h	1050	mortality	1710	13	Adelman and Smith, 1976	1
Carassius auratus	1 78g; 30 7mm	03	v	P	r\w	7.00	24.0	<220	96h	LC50	mortality	2070	13	Adelman and Smith, 1976	1
Carassius auratus	1.70g, 30.7mm	93	v	P	r\w	7.12	24.0	<220	96h	LC50	mortality	2070	13	Adelman and Smith, 1976	1
Caracolus auratus	1.759, 50.5mm	03	v	D	1 VV	7.03	27.7	<220	06h	1050	mortality	2000	13	Adelman and Smith 1076	1
Carassius auratus	1.579, 52.0 mm	93	v		I W	7.12	20	<220	9011 06h	LC50	mortality	2000	12	Adelman and Smith, 1970	1
	1.04y, 55.0mm	93	v		T VV	7.11	24.7	<220	9011 06h	LC50	mortality	2130	13	Adelman and Smith 1076	1
	1.729, 30mm	93	I V		T VV	7.21	24.9	~220	9011 06h	LC50	mortality	1000	13	Adelman and Smith 1076	1
	1.009, 35.3000	93	T V	R	TW	7.2	24.7	<220	901	LC50	monality	1000	13	Adelman and Smith, 1970	1
Carassius auratus	1.81g; 37.9mm	93	Y	ĸ	rw	7.07	24.8	<220	960	LC50	mortality	3020	13	Adelman and Smith, 1976	1
Carassius auratus	1.80g; 36mm	93	Ŷ	ĸ	rw	7.13	24.6	<220	96h	LC50	mortality	2050	13	Adelman and Smith, 1976	1
Carassius auratus	3.5g; 42.4mm	93	Y	R	rw	7.18	24.6	<220	96h	LC50	mortality	1350	13	Adelman and Smith, 1976	1
Carassius auratus	3.53g; 41.5mm	93	Y	R	rw	7.16	24.4	<220	96h	LC50	mortality	3750	13	Adelman and Smith, 1976	1
					nw,										
Carassius auratus	1-2g; 4-6cm	90	Ν	S	diluted	7.4-7.5	25	20	96h	LC50	mortality	1400	10	Pickering et al., 1962	2
Carassius auratus	0.6-1.7g	100		S	rw	7.1	18	47	96h	LC50	mortality	4270	10,21	Macek and McAllister, 1970	2
	5mo-1.5y; 1.4-			_											
Carassius auratus	2.7g		Y	R	rw	7.0-7.4	25	210	96h	LC50	mortality	2400	8,9	Adelman et al., 1976	1
Carassius auratus	1.0g		Y	CF	nw	7.4	17	44.7	96h	LC50	mortality	1040	22	Holcombe et al., 1987	1
Carassius auratus	2-5g; 3-4cm	99	Y	S	dtw	7.4-7.6	20		96h	LC50	mortality	7200	13	Ferrari et al., 2004	1
Cyprinus carpio	0.6g	93		S	rw	7.1	18	44	96h	LC50	mortality	695		Mayer and Ellersieck, 1986	4*
Cyprinus carpio	0.6-1.7g	100		S	rw	7.1	18	47	96h	LC50	mortality	695	10,21	Macek and McAllister, 1970	2
Gambusia affinis	>25mm; resistant	90%	Ν	S	tw	7.8	22	28	48h	LC50	mortality	79	23	Culley and Ferguson, 1969	3
	>25mm;														
Gambusia affinis	susceptible	90%	Ν	S	tw	7.8	22	28	48h	LC50	mortality	68		Culley and Ferguson, 1969	2
Gambusia affinis	0.5g		Ν	S	tw	7	24		96h	LC50	mortality	78	8,11	Carter and Graves, 1972	3
Gambusia affinis	2.5-3q		Ν	S	dw		21		24h	LC54	mortality	50	15,24	Lewallen, 1959	2
lctalurus melas	1.7a	93		S	rw	7.1	18	44	96h	LC50	mortality	3500		Maver and Ellersieck, 1986	4*
lctalurus melas	1.2g	93		S	rw	7.4	18	272	96h	LC50	mortality	4600		Mayer and Ellersieck, 1986	2
lctalurus melas	1.2a	93		S	rw	7.7	16	135	96h	LC50	mortality	4810		Mayer and Ellersieck, 1986	2
Ictalurus melas	0.6-1.7a	100		ŝ	rw	7.1	18	47	96h	LC50	mortality	3500	10.21	Macek and McAllister, 1970	2
Ictalurus punctatus	1.5a	93		ŝ	rw	71	18	44	96h	LC50	mortality	3290	,	Mayer and Ellersieck 1986	4*
Ictalurus punctatus	0.6-1.7a	100		š	rw	7.1	18	47	96h	1 C 50	mortality	3290	10 21	Macek and McAllister 1970	2
Ictalurus nunctatus	10a	100	N	ŝ	tw	7	26		24h	1050	mortality	3900	8 11 25	Carter and Graves 1972	2
lotalurus punctatus	6 6a		V	CE	nw	74	17	117	96h	LC50	mortality	3220	22	Holcombe et al 1987	1
	1.10	03		6	r) A/	7.4	19	44.7	06h		mortality	52	~~	Mayor and Ellorsiack 1086	2
Leponiis cyaneilus	1.1g	93		6	T VV	7.1	10	44	9011 06h	LC50	mortality	22		Mayer and Ellersieck, 1986	Z /*
	1.5y	93		0	I VV	7.1	10	44	9011 06h	LC50	mortality	22		Mayer and Ellersieck, 1900	4
Leponis macrochirus	0.99	93		3	TW	7.1	10	44	9011 06h	LC50	montality	0.2		Mayer and Ellersieck, 1966	2
	0.99	93		3	TW	7.1	10	44	9011	LC50	montality	0		Mayer and Ellersieck, 1966	2
Lepomis macrochirus	0.9g	93		5	rw	7.1	24	44	960	LC50	mortality	4.1		Mayer and Ellersleck, 1986	2
Lepomis macrochirus	0.5g	93		S	rw	6.5	12	44	96h	LC50	mortality	17		Mayer and Ellersleck, 1986	2
Lepomis macrochirus	0.5g	93		5	rw	8.5 7 -	12	44	960	LC50	mortality	34		wayer and Ellersleck, 1986	2
Lepomis macrochirus	2.2g	93		F	rw	1.5	12	314	96h	LC50	mortality	4.8		Mayer and Ellersieck, 1986	2
Lepomis macrochirus	0.6-1.7g	100		S	rw	7.1	18	47	96h	LC50	mortality	22	10,21	Macek and McAllister, 1970	2
Lepomis macrochirus	0.5g		Ν	S	tw	7	23		96h	LC50	mortality	120	8,11	Carter and Graves, 1972	2
Lepomis macrochirus	1.0g		Y	CF	nw	7.4	17	44.7	96h	LC50	mortality	9.3	22	Holcombe et al., 1987	1

Lepomis macrochirus	juvenile			S	nw				96h	LC50	mortality	9		Stay and Jarvinen, 1995	4
Lepomis macrochirus	0.6-1.5g	tg	N	S	rw	7.1	12.7	47	96h	LC50	mortality	6.9	10,21	Macek et al., 1969	2
Lepomis macrochirus	0.6-1.5g	tg	N	S	rw	7.1	18.3	47	96h	LC50	mortality	7.4	10,21	Macek et al., 1969	2
Lepomis macrochirus	0.6-1.5g	tg	N	S	rw	7.1	23.8	47	96h	LC50	mortality	4.2	10,21	Macek et al., 1969	2
Lepomis macrochirus		22	N	S					96h	LC50	mortality	8.8	7	Anonymous, 1996	2
Lepomis macrochirus	1-2g; 4-6cm	93	N	S	nw	7.4	25	20	96h	LC50	mortality	5.2	21	Henderson et al., 1960	2
Lepomis microlophus	0.6-1.7q	100		S	rw	7.1	18	47	96h	LC50	mortality	52	10,21	Macek and McAllister, 1970	2
Lepomis microlophus	<u> </u>	22	N	S					96h	LC50	mortality	8.8	7	Anonymous, 1996	2
Leuciscus idus melanotus							21		96h	LC50	mortality	120		IUCLID, 2000	2
Leuciscus idus melanotus		ta	N	S					96h	LC50	mortality	120	7	Anonymous 1996	4*
Micropterus salmoides	0.9a	93		ŝ	rw	71	18	44	96h	LC50	mortality	4.8		Mayer and Ellersieck 1986	4*
Micropterus salmoides	0.6-1.7g	100		ŝ	rw	7 1	18	47	96h	LC50	mortality	5	10 21	Macek and McAllister 1970	2
Oncorhynchus kisutch	0.7a	93		ŝ	rw	7.5	12	44	96h	1.050	mortality	6 1	,	Mayer and Ellersieck 1986	2
Oncorbynchus kisutch	4.7g	93		ŝ	rw	7.0	12	44	96h	LC50	mortality	3.2		Mayer and Ellersieck, 1986	2
Oncorhynchus kisutch	9.79 9.50	03		e	r) A/	7.1	12	44	066		mortality	3.2		Mayer and Ellersieck, 1086	2
Oncorhynchus kisutch	9.59 0.6.1.7a	100		6	T VV	7.1	12	44	9011 06b	LC50	mortality	17	10.21	Macok and McAllister 1070	2
Oncomynenus kisulen	2.7.4.1g:5.7	100		3	IVV	7.1	15	47	3011	LC30	montailty	17	10,21	Macek and McAllister, 1970	2
Oncorhynchus kisutch	7.6cm	03		9	nw	68-74	20	45-57	96h	1 C 50	mortality	12	10.21	Katz 1961	2
Oncorbunchus mykiss	1.0011	03		6	1100	7 1	12	43-57	06h	LC50	mortality	4.2	10,21	Mayor and Ellorsiock 1086	2
Oncorbunchus mykiss	1.0g	93		6	T VV	7.1	2	44	9011 06b	LC50	mortality	7.1		Mayer and Ellersieck, 1900	2
Oncomynchus mykiss	1.5y	93		0	T VV	7.1	2	44	9011 06h	LC50	mortality	7.1		Mayer and Ellersieck, 1960	2
Oncornynchus mykiss	1.5g	93		3	TW .	7.1	10	44	901	LC50	mortality	5.0		Mayer and Ellersieck, 1960	2
Oncomynchus mykiss	1.5g	93		3	TW .	7.1	12	44	901	LC50	mortality	0.3		Mayer and Ellersieck, 1960	2
Uncornynchus mykiss	1.59	93		3	IW	7.1	10	44	9011	LC50	montaility	2.9		Wayer and Ellersleck, 1960	2
									0.01-	FOFO			00		
Oncornynchus mykiss		t.a.		0			10	a a #	901	EC50		14	20	1971/1972 Marking and Mauak 1075	4
Oncornynchus mykiss	0017-	tg		5		74	12	SOIL	960	EC50	and a star life i	7.1	20	Marking and Mauck, 1975	4
Oncornynchus mykiss	0.6-1.7g	100		5	rw	7.1	13	47	960	LC50	mortality	14	21	Macek and McAllister, 1970	2
Oncornynchus mykiss	3.2g; 5.1-7.9cm	93		S	nw	6.8-7.4	20	45-57	96h	LC50	mortality	3.2	10,21	Katz, 1961	2
Oncorhynchus mykiss	4.6g		Ŷ	CF	nw	7.4	17	44.7	96h	LC50	mortality	9.1	22	Holcombe et al., 1987	1
Oncorhynchus mykiss	2.7g	99	Ŷ	S	dtw	7.4-7.6	16		96h	LC50	mortality	/	13	Ferrari et al., 2004	2
Oncorhynchus mykiss	0.6-1.5g	tg	N	S	rw	7.1	1.6	47	96h	LC50	mortality	6.8	10,21	Macek et al., 1969	2
Oncorhynchus mykiss	0.6-1.5g	tg	N	S	rw	7.1	7.2	47	96h	LC50	mortality	6.2	10,21	Macek et al., 1969	2
Oncorhynchus mykiss	0.6-1.5g	tg	N	S	rw	7.1	12.7	47	96h	LC50	mortality	5.5	10,21	Macek et al., 1969	2
Oncorhynchus mykiss							11.5		96h	LC50	mortality	3		IUCLID, 2000	2
Oncorhynchus mykiss		tg	N	S					96h	LC50	mortality	20	7	Anonymous, 1996	4
Oncorhynchus mykiss		tg	N	S					96h	LC50	mortality	3	7	Anonymous, 1996	4
Oncorhynchus mykiss		25	Y	S					96h	LC50	mortality	5.3	9	Anonymous, 1996	2
Oncorhynchus mykiss		22	N	S					96h	LC50	mortality	6.2	21	Anonymous, 1996	4
	1.5-5g; 5.1-														
Oncorhynchus tshawytscha	11.4cm	93		S	nw	6.8-7.4	20	45-57	96h	LC50	mortality	4.3	10,21	Katz, 1961	2
Perca flavescens	1.4g	93		S	rw	7.1	18	44	96h	LC50	mortality	15		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	7.5	7	44	96h	LC50	mortality	40		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	7.5	17	44	96h	LC50	mortality	5.6		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	7.5	22	44	96h	LC50	mortality	2.4		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	6.5	12	44	96h	LC50	mortality	17		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	7.5	12	44	96h	LC50	mortality	29		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	8.5	12	44	96h	LC50	mortality	8.5		Maver and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	9	12	44	96h	LC50	mortality	29		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	8	12	12	96h	LC50	mortality	18		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9g	93		S	rw	8	12	44	96h	LC50	mortality	36		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9a	93		ŝ	rw	8	12	170	96h	LC50	mortality	11		Mayer and Ellersieck, 1986	2
		~~		~		v	·			2000		••			-

Perca flavescens	0.9g	93		S	rw	8	12	300	96h	LC50	mortality	27		Mayer and Ellersieck, 1986	2
Perca flavescens	0.9a	93		S	rw	7.5	12	44	96h	LC50	mortality	10		Maver and Ellersieck, 1986	2
Perca flavescens	0.9g	93		ŝ	rw	7.5	12	44	96h	LC50	mortality	24	27.28	Maver and Ellersieck, 1986	3
Perca flavescens	0.9a	93		ŝ	rw	7.5	12	44	96h	LC50	mortality	20	27 29	Mayer and Ellersieck 1986	3
Perca flavescens	0.9g	93		ŝ	rw	7.5	12	44	96h	LC50	mortality	33	27,30	Mayer and Ellersieck 1986	3
Perca flavescens	15g	93		F	rw	7.5	12	314	96h	1.050	mortality	65	21,00	Mayer and Ellersieck 1986	2
	log	50		•	1 **	1.0	12	014	5011	LOOU	montanty	0.0		Lit Dortland 1980: Pimentel	2
Parca flavescens									06h	EC50		13	26	1071/1072	1
Perca flavescens	0.6-1.7a	100		9	rw/	71	18	47	06h		mortality	13	10 21	Macek and McAllister 1970	2
Pimonhalos promolas	70 74d	01	v	E	f vv	7.1	10	49	06h	1050	mortality	64	10,21	Goiger et al. 1000	1
Pimephales promelas	1 0-74u	02		i e		7.1	19	40	9011 06h	LC50	mortality	225		Mayor and Ellomiack 1096	1
Pimenhalas promotos	1.2y	93		0	TW DW	7.1	10	44 070	9011 06h	LC50	mortality	200		Mayer and Ellersieck, 1960	4
Pimephales prometas	1.2y	93		0	TW	7.4	10	212	9011 06h	LC50	mortality	293		Mayer and Ellersieck, 1980	2
Pimephales prometas	0.8g	93	v	5	rw	7.1	17	40	960	LC50	mortality	148	40	Mayer and Ellersleck, 1986	2
Pimephaies promeias	0.27g; 26mm	93	Y	ĸ	rw	7.32	24.9	<220	960	LC50	mortality	3260	13	Adelman and Smith, 1976	1
Pimephales promeias	0.28g; 26.7mm	93	Ŷ	ĸ	rw	7.32	24.8	<220	960	LC50	mortality	2170	13	Adelman and Smith, 1976	1
Pimephales promelas	0.20g; 25.5mm	93	Y	R	rw	7.25	24.8	<220	96h	LC50	mortality	1060	13	Adelman and Smith, 1976	1
Pimephales promelas	0.19g;m 25.6mm	93	Y	R	rw	7.32	24.7	<220	96h	LC50	mortality	910	13	Adelman and Smith, 1976	1
Pimephales promelas	0.29g; 27.7mm	93	Y	R	rw	7.36	24.9	<220	96h	LC50	mortality	1950	13	Adelman and Smith, 1976	1
Pimephales promelas	0.29g; 27.7mm	93	Y	R	rw	7.37	24.6	<220	96h	LC50	mortality	2170	13	Adelman and Smith, 1976	1
Pimephales promelas	0.38g; 29.7mm	93	Y	R	rw	7.38	24.6	<220	96h	LC50	mortality	2080	13	Adelman and Smith, 1976	1
Pimephales promelas	0.37g; 29.7mm	93	Y	R	rw	7.4	24.2	<220	96h	LC50	mortality	540	13	Adelman and Smith, 1976	1
Pimephales promelas	0.21g; 24.6mm	93	Y	R	rw	7.23	24.8	<220	96h	LC50	mortality	2530	13	Adelman and Smith, 1976	1
Pimephales promelas	0.22g; 24.9mm	93	Y	R	rw	7.24	24.4	<220	96h	LC50	mortality	1460	13	Adelman and Smith, 1976	1
Pimephales promelas	0.28g; 27.4mm	93	Y	R	rw	7.24	24.9	<220	96h	LC50	mortality	2320	13	Adelman and Smith, 1976	1
Pimephales promelas	0.26g; 26.1mm	93	Y	R	rw	7.21	24.8	<220	96h	LC50	mortality	2470	13	Adelman and Smith, 1976	1
Pimephales promelas	0.20g; 20mm	93	Y	R	rw	7.24	25	<220	96h	LC50	mortality	2910	13	Adelman and Smith, 1976	1
Pimephales promelas	0.17g; 19.6mm	93	Y	R	rw	7.23	25	<220	96h	LC50	mortality	1980	13	Adelman and Smith, 1976	1
Pimephales promelas	0.27a: 26.4mm	93	Y	R	rw	7.39	24.8	<220	96h	LC50	mortality	1200	13	Adelman and Smith, 1976	1
Pimephales promelas	0.27a: 26.7mm	93	Y	R	rw	7.35	24.6	<220	96h	LC50	mortality	1460	13	Adelman and Smith, 1976	1
Pimephales promelas	5, 5		Ν	S			20		120h	LC50	mortality	107	2.16.31	Hilsenhoff, 1959	3
Pimephales promelas	0.6-1.7a	100		ŝ	rw	7.1	18	47	96h	LC50	mortality	235	10.21	Macek and McAllister, 1970	2
Pimephales promelas	11wk: 0 12-0 38a		Y	Ř	rw	7 0-7 4	25	210	96h	LC50	mortality	1900	9.22	Adelman et al 1976	1
Pimephales promelas	0.2a		Ý	CF	nw	74	17	44 7	96h	LC50	mortality	65	22	Holcombe et al 1987	1
Pimenhales promelas	1-2a 4-6cm	93	Ň	S	nw	82	25	400	96h	1.050	mortality	160	21	Henderson et al. 1960	2
Pimenhales promelas	1-2g; 1-6cm	93	N	ŝ	nw	74	25	20	96h	1050	mortality	93	21	Henderson et al. 1960	2
Pimenhales prometas	1 day old	50		ŝ	nw	7.4	20	20	06h	1050	mortality	207	21	Stay and Janvinen 1995	1
Pimenhales prometas	30 day old			\$	nw				06h	LC50	mortality	37		Stay and Jarvinen, 1995	4
Pimophalos promolas	So day olu	00.0	v	6	1100				06h		mortality	1600	0 10 32	Solon and Nair 1070	4
Fillephales prometas		33.5		3					9011	LC30	monanty	1000	9,10,52	Morton et al. 1007: Henderson	4
Dimonholog promolog									06h	1 C 5 0	mortality	03		at al. 1050	4
Fillephales prometas									9011	L030	montailty	90		Morton et al. 1007: Llanderson	4
Dim on holes, and soles									004	1.050		00		Morton et al., 1997. Henderson	4
Pimephales promeias									960	LC50	monality	93		et al., 1959	4
				•	nw,			~~				100			
Poecilia reticulata	0.1-0.2g; 2-2.5cm	90	N	S	diluted	1.4-1.5	25	20	96h	LC50	mortality	120	10	Pickering et al., 1962	2
				_									7,33,34		
Poecilia reticulata		99%	Y	R					14d	LC50	mortality	57	,35	De Bruijn and Hermens, 1993	2
Pomoxis nigromaculatus	1.0g	93		S	rw	7.1	18	44	96h	LC50	mortality	3		Mayer and Ellersieck, 1986	2
Rasbora heteromorpha	1-3cm	25	Ν	CF		8.1	20	220	96h	LC50	mortality	42.5	36	looby et al., 1975	2
Salmo salar	0.5g	93		S	rw	7.5	12	44	96h	LC50	mortality	2.1		Mayer and Ellersieck, 1986	2
Salmo salar	0.8g	93		S	rw	7.5	12	44	96h	LC50	mortality	2.7		Mayer and Ellersieck, 1986	2
Salmo salar	0.8g	93		S	rw	7.5	12	44	96h	LC50	mortality	3.2		Mayer and Ellersieck, 1986	2
Salmo salar	0.8g	93		S	rw	7.5	12	44	96h	LC50	mortality	3.5		Mayer and Ellersieck, 1986	2

Optime optim	0.0-	00		0	 .	7 5	40	4.4	0.01	1.050	an e at e lite :	- 45		Maure and Ellersia du 1000	0
Salmo salar	0.8g	93		5	rw	7.5	12	44	960	LC50	mortality	>15		Mayer and Ellersleck, 1986	2
Salmo salar	0.5g	93		5	rw	7.5	12	44	960	LC50	mortality	3.0		Mayer and Ellersleck, 1986	2
	0.5g	93		5	IW	7.5	12	40	9011	LC50	montailty	2.5		Mayer and Ellersieck, 1966	2
Salmo salar	tingerling	93		F	rw	7.5	12	312	960	LC50	mortality	2.5		Mayer and Ellersleck, 1986	2
Salmo trutta	1.5g	93		S	rw	7.5	12	44	960	LC50	mortality	4.6		Mayer and Ellersleck, 1986	2
Salmo trutta	1.5g	93		S	rw	6.5	12	44	96h	LC50	mortality	4.3		Mayer and Ellersleck, 1986	2
Salmo trutta	1.5g	93		S	rw	9.5	12	44	96h	LC50	mortality	3.5		Mayer and Ellersleck, 1986	2
Salmo trutta	1.5g	93		S	rw	7.5	12	12	96h	LC50	mortality	6		Mayer and Ellersieck, 1986	2
Salmo trutta	1.5g	93		S	rw	7.5	12	170	96h	LC50	mortality	5.1		Mayer and Ellersieck, 1986	2
Salmo trutta	1.5g	93		S	rw	7.5	12	40	96h	LC50	mortality	6.6		Mayer and Ellersieck, 1986	2
Salmo trutta	1.2g	93		S	rw	7.5	12	40	96h	LC50	mortality	1.2		Mayer and Ellersieck, 1986	2
Salmo trutta	0.6-1.7g	100		S	rw	7.1	13	47	96h	LC50	mortality	4	21	Macek and McAllister, 1970	2
Amphibia															
Ambystoma gracile	larvae, 6wk	22	Y	CF	nw	6.7	20	49	96h	LC50	mortality	1670	9	Nebeker et al., 1998	1
Ambystoma maculatum	larvae, 8wk	22	Y	CF	nw	6.7	20	23	96h	LC50	mortality	1900	9	Nebeker et al., 1998	1
Bufo arenarum	larvae stage 25	99	Y	S	am		16	540?	96h	LC50	mortality	10440	13	Ferrari et al., 2004	1
Bufo woodhousei fowleri	tadpole	93		S	rw	7.1	15	44	96h	LC50	mortality	109		Mayer and Ellersieck, 1986	2
Bufo woodhousei fowleri	tadpole, 4-5wk	ta		S	rw	7.1	15.5	30	96h	LC50	mortality	130	10	Sanders, 1970	2
Pseudacris regilla	tadpole: 3wk	99	Y	R	nw	7.3	23	37.2	96h	LC50	mortality	4140	9	Schuvtema et al., 1995	1
Pseudacris regilla	tadpole: 3wk	22	Y	R	nw	7.3	24	37.2	96h	LC50	mortality	840	9	Schuvtema et al., 1995	1
Pseudacris regilla	tadpole: 3wk	22	Y	R	nw	7.3	24	37.2	96h	LC50	mortality	460	9	Schuvtema et al., 1995	1
Pseudacris regilla	tadpole: 3wk	99	Y	CF	nw	6.7	19	44	96h	LC50	mortality	>3600	9	Nebeker et al., 1998	1
Pseudacris triseriata	tadpole	93		S	rw	7.4	15	272	96h	LC50	mortality	3200		Mayer and Ellersieck, 1986	2
Rana catesbeiana	tadpole: 3 4g		N	ŝ	tw	7	23-26	2-	96h	LC50	mortality	7600	8 11	Carter and Graves 1972	2
Rana ridibunda	tadpole: 20d	23%	Ŷ	ŝ	dw	7 55	23	17 1	24h	LC50	mortality	7180	37	Ozmen et al 1999	2
	embrvos stage	2070	•	U U	un		_0			2000	montainty	1.00	0.		-
Xenopus laevis	10-11	ta	Y	R	nw	7.4	23	46	96h	LC50	mortality	6100		Schuytema et al., 1994	1
	embryos stage	Ū									,			,	
Xenopus laevis	10-11	ta	Y	R	nw	7.4	23	46	96h	LC50	mortality	6280		Schuvtema et al., 1994	1
· · · · · · · · · · · · · · · · · · ·	embrvos stage	-5												····,···, ···	
Xenopus laevis	10-11	ta	Y	R	nw	7.4	24	46	96h	LC50	mortality	11890	9	Schuvtema et al., 1994	1
	embrvos stage	-5													
Xenopus laevis	10-11	ta	Y	R	nw	7.4	24	46	96h	LC50	mortality	10630	9	Schuvtema et al., 1994	1
	embrvos stage	-5	-										-		
Xenopus laevis	10-11	22	Y	R	nw	7.4	24	46	96h	LC50	mortality	1600	8	Schuvtema et al., 1994	1
Xenopus laevis	tadpole: 2wk	99	Ŷ	R	nw	7.3	23	37.2	96h	LC50	mortality	2950	9	Schuvtema et al., 1995	1
Xenopus laevis	tadpole: 2wk	22	Ŷ	R	nw	7.3	24	37.2	96h	LC50	mortality	590	9	Schuvtema et al 1995	1
Xenopus laevis	tadpole: 2wk	22	Ý	R	nw	7.3	24	37.2	96h	1 C 50	mortality	420	ğ	Schuytema et al 1995	1
Xenopus laevis Xenopus laevis Xenopus laevis Xenopus laevis Xenopus laevis Xenopus laevis Xenopus laevis Xenopus laevis Xenopus laevis	10-11 embryos stage 10-11 embryos stage 10-11 embryos stage 10-11 embryos stage 10-11 tadpole; 2wk tadpole; 2wk tadpole; 2wk	tg tg tg 22 99 22 22 22	Y Y Y Y Y Y	R R R R R R R R	nw nw nw nw nw nw nw nw nw	7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3	23 23 24 24 24 24 23 24 24 24	46 46 46 46 37.2 37.2 37.2 37.2	96h 96h 96h 96h 96h 96h 96h 96h	LC50 LC50 LC50 LC50 LC50 LC50 LC50 LC50	mortality mortality mortality mortality mortality mortality mortality mortality	6100 6280 11890 10630 1600 2950 590 420	9 9 8 9 9 9	Schuytema et al., 1994 Schuytema et al., 1995 Schuytema et al., 1995 Schuytema et al., 1995	1 1 1 1 1 1 1 1

a According to Klimisch et al., 1997

Notes:

1 Purity not clear, probably technical grade and reported in a.i.

2 EC50 was calculated using reported effect and concentration data provided by author

3 Endpoint unknown

4 Far above solubility limits

- 5 Terrestrial plant but study conducted in nutrient solution; Concentration after 16 d 70% of initial concentration
- 6 Corrected for measured recoveries
- 7 Based on nominal concentrations
- 8 Purity unknown
- 9 Based on measured concentrations
- 10 TLm is used as LC50
- 11 According to standard protocol of the American Public Health Association
- 12 Lined with plastic bags
- 13 Measured concentrations close to nominal concentrations
- 14 Vague description; unclear how LC50 or NOEC is calculated
- 15 Only one concentration tested
- 16 Badly described study
- 17 Sediment present in the systems
- 18 A layer of sand was present in the systems
- 19 100 % mortality at 5 mg/L
- 20 Lowest concentration tested resulted in significant effects
- 21 Concentrations reported as active ingredient/liter
- 22 Corrected for measured recoveries
- 23 Fish from resistant population
- 24 Average 53% mortality after 24h
- 25 2.5-5g fish/liter
- 26 Endpoint not clear
- 27 Unclear if conc is measured; toxicity is determined after degradation
- 28 7 day degradation experiment
- 29 14 day degradation experiment
- 30 21 day degradation experiment
- 31 Not clear if sediment was added to the experimental systems so exposure concentrations may have been lower than nominal
- 32 Based on standard procedure of Dept. Of Fisheries and Wildlife.
- 33 Very few experimental details. Test conditions following Hermens et al., 1987.
- 34 Measured concentrations >70% of nominal concentrations.
- 35 Values reported in log umol/l; recalculated into ug/l.
- 36 Original results were given in mg/l Gusathion. Results were recalculated assuming 25% of Gusathion is azinphos methyl, as reported in the article.
- 37 Results reportedly based on measured concentrations but no info on analytical methods

Table A2.5. Chronic toxicity of azinphos-methyl to freshwater organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	т [⁰С]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^ª
Protozoa Colpidium campylum			am	S					43h	MAD	numbers	1000	1,2	Dive et al., 1980	4
Algae Scenedesmus subspicatus Scenedesmus subspicatus Scenedesmus subspicatus		92 92.5 tg	N N N	S S S	am am				96h 96h 96h	NOEC NOEC NOEC	growth rate	1800 1800 1800	3	Crommentuijn et al., 1997 Panman and Linders, 1990 Anonymous, 1996	4* 2 4*
Annelida/oligochaeta Branchiura sowerbyi	mature	tg	N	S	tw				90d	LC100	mortality	5000	4	Naqvi, 1973	3
Crustacea															
Asellus aquaticus									21d	NOEC	immobility/ mortality immobility/	0.25		Crommentuijn et al., 1997	2
Asellus aquaticus	4.6mm	ag	Ν	S	am		18	163.9	21d	EC50	mortality	2.4		Dortland, 1980	2
Asellus aquaticus Daphnia magna	4.6mm	ag	Ν	S	am		18	163.9	21d 21d	NOEC NOEC	mortality immobility immobility/	0.5-1.0 0.1	5	Dortland, 1980 Dortland, 1980	2 2
Daphnia magna	<24h	ag	Ν	S	am		18	163.9	21d	EC50	mortality	0.28		Dortland, 1980	2
Daphnia magna Daphnia magna Daphnia magna Daphnia magna	<24h <24h	ag ag	N N Y	S S	am am		18 18 20	163.9 163.9	21d 21d 21d 21d 21d	EC50 NOEC NOEC NOEC	mortality Reproduction Reproduction Reproduction	0.26 0.2 0.24 0.25	6	Dortland, 1980 Dortland, 1980 IUCLID, 2000 Anonymous, 1996	2 2 2 2
Gammarus pseudolimnaeus									30d	NOEC	mortality	0.1		Crommentuijn et al., 1997	2
Insecta															
Acroneuria lycorias Acroneuria pacifica	naiads: 2-2.5 cm	89	Y	CF	nw	7.8-8.2	12.8		30d 30d	NOEC LC50	immobility/ mortality mortality immobility/	1.4 0.24	7,8,9	Crommentuijn et al., 1997 Jensen and Gaufin, 1966	2 2
Cloeon dipterum	5.8mm	ag	Ν	S	am		18	163.9	21d	EC50	mortality	3.4		Dortland, 1980	2
Cloeon dipterum	5.8mm	ag	Ν	S	am		18	163.9	21d	NOEC	mortality	2		Dortland, 1980	2
Ephemerella subvaria									30d	NOEC	mortality	2.5		Crommentuijn et al., 1997	2
Hydropsyche bettoni									30d	NOEC	mortality	2.9		Crommentuijn et al., 1997	2
Ophiogomphys rupinsulensis Pteronarcys californica	2-5 cm	tg	Y	CF	nw	7.8-8.2	12.8		30d 30d 19-	NOEC LC50	mortality mortality	1.7 1.3	7,8,9	Crommentuijn et al., 1997 Jensen and Gaufin, 1966	2 2
Xanthocnemis zealandica	eggs	100	Ν	S	tw	8	20	48	23d	NOEC	hatching	40		Hardersen and Wratten, 2000	2

Diagon															
Pisces	ombruco	220/	N	D	2011	6.0	26.20	100	OGh	NOEC	hotohing	100	0.10	Malana and Paylook 1070	2
Cyprinus carpio	empryos	22 70	IN	R O	TIW	0.9	20-20	109	9011 06h	NOEC	matching	100	9,10	Majorie and Ellergiack, 1970	2
	york-sac iry	93		3	IW	7.5	12	44	901	LC50	monality	0.30			2
Oncomynenus mykiss		4	v	-			15		210	LC50	monality	2.33	0.44		4
Oncornynchus mykiss		tg	Ŷ	F			05		850	NOEC	survival	0.44	6,11	Anonymous, 1996	2
Oryzias latipes	embryos	CT	N	S	rw		25		7d	NOEC	survival of try	≤0.06	12	Teather et al., 2005	2
Oryzias latipes	embryos	cf	N	S	ŕw		25		7d	NOEC	hatching	≤0.06	12	Teather et al., 2005	2
Oryzias latipes	embryos	cf	N	S	rw		25		7d	NOEC	fry length	<0.06	12	l eather et al., 2005	2
							22.4-								
Pimephales promelas	from fry onward	93%	Y	CF	nw	7.5	24.6	220	57d	NOEC	survival of fry	0.51	13	Adelman and Smith, 1976	1
							22.4-								
Pimephales promelas	from fry onward	93%	Y	CF	nw	7.5	24.6	220	90d	NOEC	growth	0.51	13	Adelman and Smith, 1976	1
											fecundity: #				
							22.4-		121-		off eggs				
Pimephales promelas	from fry onward	93%	Y	CF	nw	7.5	24.6	220	230d	NOEC	produced	0.33	13,14	Adelman and Smith, 1976	1
Salmo salar	areen eaa	93		S	rw	6.6	7	12	96h	LC50	mortality	>50		Maver and Ellersieck, 1986	2
Salmo salar	areen ega	93		S	rw	7.4	7	44	96h	LC50	mortality	>50		Mayer and Ellersieck, 1986	2
Salmo salar	areen ega	93		ŝ	rw	78	7	170	96h	LC50	mortality	>50		Mayer and Ellersieck 1986	2
Salmo salar	volk-sac frv	93		š	rw	6.6	7	12	96h	LC50	mortality	>15		Mayer and Ellersieck 1986	2
Salmo salar	volk-sac frv	03		ŝ	rw/	74	7	14	96h	LC50	mortality	18		Mayer and Ellersieck, 1986	2
Salmo salar	volk-sac frv	03		\$	rw	7.8	7	170	96h	LC50	mortality	15		Mayer and Ellersieck, 1986	2
Salmo solor	yolk sac fry	93		6	I W	6.6	12	12	9011 06h	LC50	mortality	3.5		Mayer and Ellersieck, 1986	2
Salino Salar	yolk-sac fry	93		0	I VV	0.0	12	12	9011 06h	LC50	mortality	3.5		Mayer and Ellersieck, 1900	2
	york-sac fry	93		3	IW	7.4	12	44	901	LC50	monality	2.3		Mayer and Ellersieck, 1966	2
Saimo salar	york-sac try	93		5	rw	7.8	12	170	960	LC50	mortality	1.8		Mayer and Ellersleck, 1986	2
Amphihia															
Ambustoma gracilo	lanvao Gwk	22	v	CE	014/	67	20	40	104	NOEC	arowth	100	6 15	Nebeker et al. 1008	1
Ambystoma gracile	larvae, Owk	22	v v		1100	6.7	20	49	100	NOEC	growth	20	6 16	Nebeker et al., 1990	1
Ambysionia maculatum	Idivae, owk	22	T	GF	TIVV	0.7	20	23	100	NUEC	giowin defermeities et	30	0,10	Nedekei el al., 1990	I
	47	50		D	4		20		960+4	NOFO	deformities at	> 5000	0.47	Harris et al. 2000	0
Buto americanus	stage 17	50	N	R	ťW	~ -	20		8n	NOEC	natching	>5000	9,17	Harris et al., 2000	2
Pseudacris regilla	tadpole; 3wk	99	Y	CF	nw	6.7	19	44	10d	NOEC	growth	980	6,18	Nebeker et al., 1998	1
	9h after			_											
Rana clamitans	fertilization	50	N	R	tw		20		13d	LC50	mortality	2610	9	Harris et al., 1998	2
	9h after														
Rana clamitans	fertilization	50	N	R	tw		20		96h	LC50	mortality	>5000	9	Harris et al., 1998	2
	9h after														
Rana clamitans	fertilization	50	Ν	R	tw		20		16d	LC50	mortality	>5000	9	Harris et al., 1998	2
									96h+4		deformities at				
Rana pipiens	stage 15	50	Ν	R	tw		20		8h	NOEC	hatching	>5000	9.17	Harris et al., 2000	2
	embryos stage												2,11		
Xenonus laevis	10-11	ta	Y	R	nw	74	23	46	96h	NOEC	deformity	510	6 19	Schuvtema et al 1994	1
Xonopuo laovio	embryos stage	-9	•								dererrity	0.0	0,10		•
Yononus loovis	10_11	ta	V	P	DW	74	23	46	96h	NOEC	deformity	3200	6 20	Schuvtema et al 100/	1
neriopus laevis	ombruce etage	^r 9		IX I	1100	7.7	20	40	3011	HOLO	deformity	0200	0,20	Condyterna et al., 1997	1
Yananya laavia	10 11	ta	v	D	2011	74	22	46	OGh	NOEC	longth	820	6 10	Sobustoma at al 1001	1
venopus iaevis	IU-II	ıy	T	к	11W	1.4	23	40	9011	NUEC	length	020	0,19	Schuylema et al., 1994	I
	embryos stage		~	-		7.4	00	40	0.01	NOFO	1	400	0.04	0.4 1.4 1.4 1.4 1.001	
xenopus laevis	10-11	22	Y	к	nw	1.4	23	40	96N	NUEC	ienath	480	0.21	Schuvtema et al., 1994	1

a According to Klimisch et al., 1997

- 1 Minimal Active dose is calculate according to Dive and Leclerc, 1975.
- 2 Ciliates were kept in a bacterial suspension
- 3 NOEC was calculated using concentration data provided by author
- 4 Only 0% or 100% mortality observed. In the acute study 100% mortality at 5 mg/l was observed, in the chronic study 0% mortality at 4 mg/l. No other concentrations tested or reported.
- 5 Geomean = 0.70 ug/L
- 6 Based on measured concentrations
- 7 TLm is used as LC50
- 8 Measured concentrations close to nominal concentrations
- 9 Based on nominal concentrations a.i.
- 10 LOEC = 1000 ug/L
- 11 LOEC = 0.98 ug/L
- 12 Only one concentration tested
- 13 Same results with slightly different test characteristics also reported in Adelman et al., 1976. Bull. Environ. Cont. Toxicol. 15(6): 726-733
- 14 Begin of spawning after 121d, end of spawning after 230d; Same results with slightly different test characteristics also reported in Adelman et al., 1976. Bull. Environ. Cont. Toxicol. 15(6): 726-733
- 15 LOEC = 220; commercial formulation used but results based on measured concentrations
- 16 LOEC = 110; commercial formulation used but results based on measured concentrations
- 17 Exposure for 96h at stage 15 and 48h at first limb emergence
- 18 LOEC = 3600 ug/L
- 19 LOEC = 1310 ug/L
- 20 LOEC = 6360 ug/l
- 21 LOEC = 1300 ug/L

T.L.L. AO / A. L. L. '.'L			1.1.2.1.2.2.2	
Table A2.6. Acute toxicity	y of azin	pnos-metny	/I to marin	e organisms.

Species	Species properties	Purity [%]	A	Test type	Test water	рН	Т [ºC]	Salinity [‰]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Bacteria				21			• •				•				
Vibrio fisherii		cf	N	9			15	20	5min	EC50	luminescence	351	12	Benson and Long 1991	3
Vibrio fishorii		Cf	N	6			15	20	15min	EC50	luminescence	370	1,2	Benson and Long, 1991	3
		CI Of	IN N	0			15	20	20min	LC30	luminescence	370	1,2	Denson and Long, 1991	5
VIDNO IISNENI Vibria fialaarii			IN N	3		0070	15	20	Somin	EC50	luminescence	409	1,2	Kedles and Dansen 4005	3
Vibrio fisnerii		22	N	S		6.8-7.2		20	5min	EC50	iuminescence	300	3,4	Kadlec and Benson, 1995	2
Vibrio fisherii		22	Ν	S		6.8-7.2		20	15min	EC50	luminescence	315	3,4	Kadlec and Benson, 1995	2
Mollusca															
Cardium edule				S	nw		15		48h	1.050	mortality	>10000	5	Portmann 1971	2
Caractedormo odulo			N	6	1100		15		400	1050	mortality	>10000	5	Portmann, 1971	2
	iuuonilo	06	IN N	5	TIW		10	20	4011 06h	LC30	montailty	>10000		Mover 1096	2
Crassostrea virginica	Juvenile	96	IN	F			29	28	960	EC50		>1000		Mayer, 1986	2
											shell growth				-
Crassostrea virginica			N	CF	nw		13	14	96h	EC50	rate	>1000		Butler, 1963	2
											shell growth				
Crassostrea virginica			Ν	CF	nw		30	28	96h	EC50	rate	>1000		Butler, 1963	2
C C														Morton et al., 1997: Davis and	
Crassostrea virginica									48h	EC50		620	6	Hidu, 1969	4
Crustacea															
Amphiascus tenuiremis		ta	Y	S	rw		20	30	96h	LC50	mortality	1.99	7	Klosterhaus et al., 2003	2
Amphiascus tenuiremis		ta	Y	S	rw		20	30	96h	LC50	mortality	5	8	Klosterhaus et al 2003	3
Artemia salina	24h old	-9 au	Ň	ŝ	am	8.6	25	35	24h	1050	mortality	24290	å	Sánchez-Fortún et al 1995	3 3
Artemia salina	48h old	ag	N	ŝ	am	8.6	25	35	24h	1050	mortality	15260	ă	Sánchez-Fortún et al., 1995	3
Artemia salina	72h old	ay	N	6	am	0.0	25	35	2411 24h	1050	mortality	12510	9	Sánchez-Fortún et al., 1995	2
Artemia salina		ay	IN N	3	dill	0.0	20	30	2411	LC50	inorality	12510	9		3
Artemia sp.	neonates	>95%	N	S	rw		25	33	24n	LC50	immobility	23000	9	Guzzella et al., 1997	3
Callinectes sapidus	juvenile	96	N	F			27	27	48h	EC50	immobility	320		Mayer, 1986	2
Callinectes sapidus	juvenile		Ν	CF	nw		27		48h	EC50	mortality	550		Butler, 1963	2
Carcinus maenas				S	nw		15		48h	LC50	mortality	33-100	5	Portmann, 1971	2
Crangon crangon				S	nw		15		48h	LC50	mortality	0.3-1	5	Portmann, 1971	2
Crassostrea virginica		tg	Y	F					96h	LC50	mortality	4700	7	Anonymous, 1996	2
Leiostomus xanthurus	iuvenile	0	Ν	F	nw		21	21	48h	EC50	mortality	50	10	Butler, 1964	3
	J						25-28(dav)								
Mysidonsis bahia			Y	S	nw	6-8	17-20(night)	15	96h	1.050	immobility	0.811	12	Lauth et al. 1996	3
Mysidopsis bahia	<21h	98	ÿ	IF	nw	00	26	20	96h	1050	mortality	0.011	3 13	Morton et al 1997	2
Mysidopsis bahia	S240	50	v v		1100		20	20	9011 06h	1050	mortality	0.29	3,13		2
Mysidopsis barila		ıg	T	г			25 29(day):		9011	LC50	montaility	0.2	1	Anonymous, 1996	2
Dele energia e la consta			v	0		<u> </u>	20-20(udy),	45	0.Ch	1.050	ine ne e le ilite :	4.04	10	Lawth at al. 1000	•
Palaemonetes pugio			Ŷ	S	nw	6-8	17-20(night)	15	96h	LC50	Immobility	1.34	12	Lauth et al., 1996	3
Palaemonetes pugio	Adult	tg	Y	R	nw		25	20	96h	LC50	mortality	1.64	3,13	Key et al., 1998	2
Palaemonetes pugio	larvae, 18d old	tg	Y	R	nw		25	20	96h	LC50	mortality	0.38	3,13	Key et al., 1998	2
	larvae, newly														
Palaemonetes pugio	hatched	tg	Y	R	nw		25	20	96h	LC50	mortality	0.52	3,13	Key et al., 1998	2
														Morton et al., 1997: Scott et al.,	
Palaemonetes pugio									96h	LC50	mortality	1		1990	4
, ,											-			Hall and Anderson. 1995.: Scott	
Palaemonetes pugio	adults							5	96h	LC50	mortality	0.97		et al., 1990	4
								-						Hall and Anderson 1995 · Scott	
Palaemonetes pugic	adulte							20	96h	1 C 50	mortality	1.05		at al 1000	٨
Pondoluo montoqui	uuuus			0	D 111		15	20	10h	1050	mortality	0.2.1	5	Bortmonn 1071	- 2
ranualus montagui				3	T I W		10		4011	LC30	montailty	0.3-1	Э		4

Penaeus aztecus	juvenile	96	Ν	F			31	25	48h	EC50	mortality	2.4		Mayer, 1986	2
Penaeus aztecus	adult		Ν	CF	nw		31		48h	EC50	mortality	4.4		Butler, 1963	2
											-				
Rotifers															
Brachionus plicatilis	neonates	>95%	Ν	S	rw		25	33	24h	LC50	immobility	85000	9	Guzzella et al., 1997	3
Pisces															
110000			Y												
	35d. 20 3ma.		sto										1/ 15 1		
Athorinono offinio	13 5mm	08	oko	c		7182	20	20	06h	1 C 5 0	mortality	3.4	6	Hommor et al. 1002	3
Autennops annis	iuvenile	90	UKS V	5		7.1-0.2	20	20	144		mortality	0.02	7 17	Crommontuiin et al. 1007	5
Cyprinodon variegalus	juvernie	97	T	ĸ	nw			25	140	LUEC	monality	0.65	7,17	Crommentuijn et al., 1997	2
	Indigenous														
	population; 66											-			
Cyprinodon variegatus	days old	98	Y	IF	nw		25	20	96h	LC50	mortality	2	3,13	Morton et al., 1997	2
Cyprinodon variegatus		tg	Y	F					96h	LC50	mortality	2700	7,18	Anonymous, 1996	4
					nw										
					diluted										
	0.32g (0.12-				with						oxygen				
Fundulus heteroclitus	1.06q)		Ν	S	dw	8.0-8.2	30	25	24h	NOEC	uptake	10	19	Cochran and Burnett, 1996	2
Fundulus heteroclitus	0,	22	Ν	R			20-25	5	96h	LC50	mortality	28		Fulton and Scott, 1991	2
Fundulus heteroclitus		22	Ν	R			20-25	25	96h	LC50	mortality	36.95		Fulton and Scott, 1991	2
Fundulus heteroclitus	3-7cm		Y	R	nw		20	5	96h	LC50	mortality	85.1	3 13	Van Dolah et al 1997	2
Fundulus heteroclitus	3-7cm		Ý	R	nw		20	20	96h	LC50	mortality	64.5	3 13	Van Dolah et al 1997	2
T andulas neteroentas	0 / 011		•				20	20	0011	2000	montailty	01.0	0,10	Hall and Anderson 1995: Scott	-
Fundulua hataraalitua	adulta							20	OGh	1.050	mortality	26.05		at al. 1001	4
Tundulus neterociitus	0 4 0 9 at 2 2							20	9011	L030	montailty	30.95		et al., 1991	4
	0.4-0.0y, 2.2-	02		0		6974	20	F	OCh	1.050	mortality	10.1	2	Kata 1061	2
Gasterosteus acuteatus		93		3	TIVV	0.0-7.4	20	5	9011	LC30	montaility	12.1	3	Kalz, 1901	2
A A A A A A	0.4-0.8g; 2.2-	~~		~		0074	00	05	0.01	1.050		4.0	0	K-1 4004	0
Gasterosteus aculeatus	4.4cm	93		S	nw	6.8-7.4	20	25	960	LC50	mortality	4.8	3	Katz, 1961	2
Leiostomus xanthurus	juvenile	96	N	F			21	21	48h	LC50	mortality	28		Mayer, 1986	2
					nw										
					diluted										
	0.32g (0.12-				with						oxygen				
Leiostomus xanthurus	1.06g)		Ν	S	dw	8.0-8.2	30	25	24h	NOEC	uptake	10	19	Cochran and Burnett, 1996	2
Limanda limanda				S	nw		15		48h	LC50	mortality	10-30	5	Portmann, 1971	2
Litopenaeus stylirostis	larvae	cf	Ν	S		8.4-8.7	22-24	33-35	48h	LC50	mortality	1470.3	11	Galindo Reves et al., 2002	2
	29d; 42.9mg;												14,15,1	•	
Menidia bervllina	15.9mm	98	Ν	S		7.1-8.2	25	20	96h	LC50	mortality	22.8	6	Hemmer et al., 1992	3
							25-28(dav) [.]							,	
Menidia menidia			Y	S	nw	6-8	17-20(night)	15	96h	1.050	immobility	1 10	12	Lauth et al. 1996	3
Muail cenhalus	iuvenile	96	Ň	F	1100	00	28	25	48h	LC50	mortality	3.2	12	Mayer 1986	2
Mugil curomo	juvenile	30	N	CE	D W		20	20	48h	LC50	mortality	5.5		Butler 1963	2
wayii culema	Juvernie		IN	01	1100		20		-1011	2000	tomporature	0.0		Dutor, 1900	£
Salma aglar	2 40m: 1a	>0F	NI	6			15		24h	NOEC	adaction	0.01	20	Deterson 1076	2
Sairio salar	3-4cm, rg	~90	IN N	3			10	~	2411 00h	NUEC	Selection	0.01	20	releisull, 1970	5
Sciaenops oceilatus	3-/CM		Y	ĸ	nw		20	5	960	LC50	mortality	1.1	3,13	Van Dolah et al., 1997	2
Sciaenops ocellatus	3-7CM		Y	к	nw		20	∠0	960	LC50	mortality	0.2	3,13	van Dolah et al., 1997	2

a According to Klimisch et al., 1997

- 1 Commercial fomulation may be 22% active ingredient?
- 2 No record on correction for purity
- 3 Results in nominal concentration a.i.
- 4 Test waters were stream waters with 2% NaCl
- 5 Methods reported in Portmann, 1968 and Portmann and Connor, 1968.
- 6 Not clear which egg stage tested
- 7 Results based on measured concentrations
- 8 Results based on measured pore water concentrations from sediment assays!
- 9 Result may have been 1000 times lower (mg/µg confusion?) because other compounds in the study appear to have been tested far beyond their solubility limits
- 10 Vague description of test conditions; no controls; no description of test compound or purity; results could very well be based on commercial formulation instead of ai.
- 11 Food provided twice per day
- 12 Salt marsh model ecosystem experiment with animals in small containers exposed within the mesocosms; varying conditions during time.
- 13 Measured concentrations close to nominal concentrations
- 14 Low oxygen concentrations reported
- 15 Fed during exposure
- 16 Results are given in nominal exposures, calculated from measured stock solutions
- 17 54% mortality at 0.83 ug/L
- 18 Very high LC50, maybe factor 1000 wrong?
- 19 1 concentration measured
- 20 Not clear if azinphos-methyl or azinphos-ethyl is tested. Vaguely described study.

Table A2.7. Chronic toxicity of azinphos-methyl to marine organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	т [⁰С]	Salinity [‰]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Mollusca											-				
Crassostrea virginica	Eggs		Ν	R	nw		24		48h	EC10	eggs developing eggs	410	1,2	Davis and Hidu, 1969	2
Mercenaria mercenaria	Eggs		Ν	R	nw		24		48h	EC10	developing	890	1,2	Davis and Hidu, 1969	2
Mercenaria mercenaria	2d old larvae		Ν	R	nw		24		12d	EC10	survival	390	1,2	Davis and Hidu, 1969	2
Mercenaria mercenaria	2d old larvae		Ν	R	nw		24		12d	EC10	growth	>1000	1,2	Davis and Hidu, 1969	2
Crustacea															
Marialana in hahia	-0.4h	00	V				00	00	004	NOFO	time of	0.007	245	Martan at al. 1007	0
Mysidopsis bania	<24N	98	Y		nw		20	20	260	NOEC	reproduction	0.097	3,4,5	Morton et al., 1997	2
Mysidopsis bania	<2411 20.4h	90	T		nw		20	20	200	NOEC	# or young	0.02	3,4,0	Monton et al., 1997	2
Mysidopsis bania	<24N	98	Ŷ	IF	nw		20	20	260	NOEC	mortality	0.097	3,4,7	Morton et al., 1997	2
Pisces															
					nw(filt										
Cyprinodon variegatus	embryo> adult	96	Y	S	ered)		30	25(8-34)	219d	NOEC	reproduction	0.25	3,4,8,9	Cripe et al., 1984	2
Cyprinodon variegatus	embryos	98	Y	IF	nw		25	20	28d	NOEC	survival	0.17	3,4,10	Morton et al., 1997	2
Cyprinodon variegatus	embryos	98	Y	IF	nw		25	20	28d	NOEC	growth	0.34	3,4,11	Morton et al., 1997	2

a According to Klimisch et al., 1997

- 1 EC10 was calculated using reported effect and concentration data provided by author
- 2 Purity unknown
- 3 Measured concentrations within range of nominal concentrations
- 4 Results based on nominal concentrations
- 5 LOEC = 0.18 ug/L
- 6 LOEC = 0.030 ug/L
- 7 LOEC = 0.18 ug/L
- 8 LOEC = 0.5 ug/L
- 9 Life cycle test; methods well described, results not well described
- 10 LOEC = 0.34 ug/L
- 11 LOEC = 0.62 ug/L

|--|

Species	Species proper- ties	Purity [%]	A	Test type	Test water	рН	т [ºC]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^ª
Crustacea															
Daphnia magna	<24h		Ν	S	am	7.9	19	202	26h	LC50	mortality	0.1	1	Frear and Boyd, 1967	2
Gammarus fasciatus	mature	tg	Ν	S	rw	7.1	21	47	96h	LC50	mortality	0.15	2	Sanders, 1972	2
Gammarus lacustris		tg	Ν	S	rw	7.1	21	47	96h	LC50	mortality	0.074		Sanders, 1969	2
Gammarus lacustris	mature	tg	Ν	S		7.1	21	44	96h	LC50	mortality	0.074		Mayer and Ellersieck, 1986	4*
Simocephalus serrulatus	1st	tg	Ν	S		7.1	15	44	48h	EC50	mor/immo	0.1		Mayer and Ellersieck, 1986	2
Insecta															
Aedes taeniorhynchus	4th instar larvae	tg	Y	S	dw		25		24h	LC50	mortality	30	3	Schmidt and Weidhaas, 1958	2
Anopheles quadrimaculatus	4th instar larvae	tg 25%	Y	S	dw		25		24h	LC50	mortality	20	3	Schmidt and Weidhaas, 1958	2
		wettable													
Culex pipiens molestus	larvae	powder	Ν	S	tw		20-22		48h	LC100	mortality	>10	4,5	Rettich, 1979	3
Hexagenia	naiads	97.5	Ν	S	nw		22-24		24h	LC50	mortality	427	2	Carlson, 1966	2
Hydropsyche	larvae	97.5	Ν	S	nw		22-24		24h	LC50	mortality	5.2	2	Carlson, 1966	2
Pisces															
Carassius auratus	1-2g; 4-6 cm >25mm;	97.5	Ν	S	nw, diluted	7.4-7.5	25	20	96h	LC50	mortality	>18000	2,6	Pickering et al., 1962	3
Gambusia affinis	susceptible	ta	Ν	S	tw	7.8	22	28	48h	LC50	mortality	3500	6	Culley and Ferguson, 1969	3
lctalarus punctatus	1.0g	tq	Ν	S		7.4	18	44	96h	LC50	mortality	840		Mayer and Ellersieck, 1986	2
Lepomis macrochirus	1-2a: 4-6cm	100	Ν	S	nw	7.4	25	20	96h	LC50	mortality	180	4	Henderson et al., 1960	2
Lepomis macrochirus	1.3g	ta	Ν	S		7.1	18	44	96h	LC50	mortality	340		Maver and Ellersieck, 1986	2
Lepomis macrochirus	- 0	-5							48h	LC50	mortality	8000	6	Wellborn, 1971; Willford, 1967	3
Micropterus salmoides	0.9g	tg 25%	Ν	S		7.4	18	272	96h	LC50	mortality	1100		Mayer and Ellersieck, 1986	2
		wettable		~				~-							
Morone saxatilis	0.93g; 46mm	powder	N	S	dtw	7.9	21	35	96h	LC50	mortality	15500	6,7,8,9	Wellborn, 1971	3
Oncorhynchus clarki	0.3g 2.7-4.1g; 5.7-	tg	Ν	S		7.4	12	44	96h	LC50	mortality	862		Mayer and Ellersieck, 1986	2
Oncorhynchus kisutch	7.6cm	98		S	nw	6.8-7.4	20		96h	LC50	mortality	15000	2,4,6	Katz, 1961	3
Oncorhynchus mykiss	3.2g; 5.1-7.9cm	98		S	nw	6.8-7.4	20		96h	LC50	mortality	1500	2,4	Katz, 1961	2
Oncorhynchus mykiss	1.2g	tg	Ν	S		7.1	12	44	96h	LC50	mortality	890		Mayer and Ellersieck, 1986	2
Oncorhynchus mykiss		0							48h	LC50	mortality	550		Wellborn, 1971: Willford, 1967	4
Pimephales promelas	1-2g; 4-6cm	100	Ν	S	nw	8.2	25	400	96h	LC50	mortality	>18000	4,6	Henderson et al., 1960	3
Pimephales promelas	1-2g; 4-6cm	100	Ν	S	nw	7.4	25	20	96h	LC50	mortality	>18000	4,6	Henderson et al., 1960	3
Poecilia reticulata	0.1-0.2g; 2-2.5cm	97.5	Ν	S	nw, diluted 'standard quality	7.4-7.5	25	20	96h	LC50	mortality	560	2	Pickering et al., 1962	2
		cf [.]			dilution										
Rasbora heteromorpha	1 3-3cm	asuntol	Ν	R	water'	72	20	20	48h	LC50	mortality	46	1 10 11	Alabaster J S 1969	2
Salvelinus namavcush	2 1a	ta	N	S		74	12	162	96h	1050	mortality	593	1,10,11	Mayer and Ellersieck 1986	2
Stizostedion vitreum vitreum	0.8g	tg	N	š		7.4	18	272	96h	LC50	mortality	780		Mayer and Ellersieck, 1986	2

a According to Klimisch et al., 1997

- 1 Purity unknown
- 2 TLm is used as LC50
- 3 No mention on the amount of acetone used as solvent
- 4 Based on nominal concentrations a.i.
- 5 Including a 2-3 cm layer of decaying leaves
- 6 Far above solubility limits
- 7 Exposure in plastic bags
- 8 Fish exposed in suspensions with insoluble wettable powder
- 9 LC50 recalculated from the reported concentration wettable powder (62000)
- 10 Standardised procedure according to Pesticides Safety Precaution Scheme, 1966
- 11 Median lethal concentrations determined by graphical interpolation

Table A2.9. Chronic toxicity of coumaphos to freshwater organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	т [⁰С]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Crustacea Daphnia magna		99.1	Y							NOEC	Survival	0.0337	1	US EPA, 2000	2
Pisces Oncorhynchus mykiss		99.2	Y							NOEC	Length and weight	11.7	1	US EPA, 2000	2
a According to Klimicoh a	at al. 1007														

a According to Klimisch et al., 1997

Notes:

1 Results based on mean measured concentrations

Table A2.10. Acute toxicity of coumaphos to marine organisms.

Species	Species proper- ties	Purity [%]	A	Test type	Test water	рН	т [⁰С]	Salinity [‰]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Mollusca											-				
Crassostrea virginica	juvenile	95	Ν	F			9	21	96h	EC50		290		Mayer, 1986	2
Crassostrea virginica	juvenile	95	Ν	F			30	23	96h	EC50		880		Mayer, 1986	2
											50%				
Oyster (no further reference of				_							decrease in				
species)	juvenile		Ν	F	nw		30	23	48h	EC50	shell growth	950	1	Butler, 1964	3
Overter (no further reference of											50%				
	iuvonilo		м	E	D 14		0	21	10h	ECEO	decrease in	510	1	Puttor 1064	2
species)	Juvernie		IN	Г	TIVV		9	21	4011	EC30	shell growth	510	I	Buller, 1904	3
Crustacea															
Artemia salina	24h old	aq	Ν	s	am	8.6	25	35	24h	LC50	mortality	21230	2	Sánchez-Fortún et al., 1995	3
Artemia salina	48h old	ad	N	ŝ	am	8.6	25	35	24h	LC50	mortality	5510	2	Sánchez-Fortún et al., 1995	3
Artemia salina	72h old	aq	N	S	am	8.6	25	35	24h	LC50	mortality	5220	2	Sánchez-Fortún et al., 1995	3
Penaeus duorarum	juvenile	95	Ν	F			28	29	48h	EC50	,	2		Mayer, 1986	2
	•										mortality or				
											loss of				
Penaeus duorarum			Ν	F	nw		28	29	48h	EC50	equilibrium	3.6	1	Butler, 1964	3
Pisces				_											
Cyprinodon variegatus	juvenile	95	Ν	F			12	28	48h	LC50	mortality	280		Mayer, 1986	2
0	0.4-0.8g; 2.2-	~~		0		0074	00	-	0.01	1.050		4000		K-1 1001	0
Gasterosteus aculeatus	4.4Cm	98		5	nw	0.8-7.4	20	5	90N	LC50	mortality	1802		Katz, 1901	Z
Gasterosteus aculeatus	0.4-0.0y, 2.2- 4 4cm	98		S	nw	6 8-7 4	20	25	96h	1.050	mortality	1470	з	Katz 1961	2
Cusion Osicus aculeatus	1. 10111			<u> </u>		0.07.4		20	0011	2000	montailty		~	1002, 1001	-

a According to Klimisch et al., 1997

Notes:

1 Vague description of test conditions, no controls, no description of test compound of purity, could very well have been the commercial formulation instead of the active ingredient.

2 Far above solubility limits

3 Results based on nominal concentrations a.i.

Species	Species proper-	Purity	A	Test	Test	рН	т	Salinity	Exp.	Criterion	Test endpoint	Value	Notes	Reference	Reliability
	ties	[%]		type	water		[ºC]	[‰]	time			[ug/l]			index ^a
Mollusca															
Crassostrea virginica	eggs		Ν	R	nw		24		48h	EC10	eggs developing	70	1,2	Davis and Hidu, 1969	2
Crassostrea virginica	2d old larvae		Ν	R	nw		24		12d	EC10	survival	>1000	1,2	Davis and Hidu, 1969	2
Crassostrea virginica	2d old larvae		Ν	R	nw		24		12d	EC10	growth	20	1,2	Davis and Hidu, 1969	2
Mercenaria mercenaria	eggs		Ν	R	nw		24		48h	EC10	eggs developing	4780	1,2	Davis and Hidu, 1969	2
Mercenaria mercenaria	2d old larvae		Ν	R	nw		24		12d	EC10	survival	120	1,2	Davis and Hidu, 1969	2
Mercenaria mercenaria	2d old larvae		Ν	R	nw		24		12d	EC10	growth	50	1,2	Davis and Hidu, 1969	2

a According to Klimisch et al., 1997

Notes:

EC50s recalculated using graphpad Purity unknown 1

2

Table A2.12. Acute toxicity of heptenophos to freshwater organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	т [ºС]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Algae Scenedesmus subspicatus		95%		S				-	72h	EC50	biomass	35000	1,2	Panman en Linders, 1992	2
Crustacea Daphnia magna Daphnia magna		96 96	Y Y	S S	tw tw:dw (80:20) filtered	7.5 7.5	- 21		48 48h	LC50 LC50	mor/immo mortality	2 2	3	Crommentuijn et al., 1997 Panman en Linders, 1992	2 4*
Daphnia magna	1.2-1.4 mm	cf; 50%		S	aquarium water	7.7-7.9	15.8	243-260	48h	LC50	mortality	800	4	Panman en Linders, 1992	2
Pisces Idus melanotus Poecilia reticulata Poecilia reticulata Poecilia reticulata	1.7-2.1g 1wk, 1.2-1.7cm 1wk; 1.2-1.7cm 1 7-2 1g	cf; 50%	N	S S S	tw:dw (50:50) tw/am tw:dw (50:50) tw:dw (50:50)	7.1-7.3 7.1-7.3 7.1-7.3 7.1-7.3	21 21 21	238 170-240 170-240 170-201	96h 96 96h 96h	LC50 LC50 LC50	mortality mor/immo mortality mortality	11300 9300 9300 13100	5 2,6 7	Panman en Linders, 1992 Crommentuijn et al.,1997 Panman en Linders, 1992 Panman en Linders, 1992	2 2 4* 2

a According to Klimisch et al., 1997

- 1 According to NEN guideline 6506
- 2 Results based on nominal concentrations a.i.
- 3 According to BBA guidelines
- 4 LC50 reported as 1600 mg/L nominal Hostaquick; recalculated into active ingredient
- 5 LC50 reported as 1600 mg/L nominal Hostaquick; recalculated into active ingredient
- 6 Length of 1.7 cm at age of 1 week does not seem correct.
- 7 LC50 reported as 26200 mg/L nominal Hostaquick; recalculated into active ingredient
Table A2.13. Chronic toxicity of heptenophos to freshwater organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	т [⁰С]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Algae															
Scenedesmus subspicatus		95	Ν						72h	NOEC	Growth rate	25000		Crommentuijn et al., 1997	2
Scenedesmus subspicatus		95							72h	NOEC	biomass	25000	1,2	Panman and Linders, 1992	2
A seconding to Minister	at al. 4007														

a According to Klimisch et al., 1997

Notes:

1

According to NEN guideline 6506 Results based on nominal concentrations a.i. 2

Table A2.14. Acute toxicity of mevinphos to freshwater organisms.

Species	Species proper- ties	Purity [%]	A	Test type	Test water	рН	т [ºC]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^ª
Mollusca															
Australorbis glabratus	300mg		Ν	S	am		25-27	203	24h	LC100	mortality	10000	1,2,3	Hopf and Muller, 1962	3
Annelida/oligochaeta				-											
Branchiura sowerbyi	mature	tg	Ν	S	tw				90d	LC100	mortality	≤500	4	Naqvi, 1973	3
Crustacea															
Asellus brevicaudus	mature	ta	N	S	rw	7.1	21	47	96h	LC50	mortality	56	5	Sanders, 1972	2
Asellus brevicaudus	early instar	60	N	ŝ		7.4	15	44	96h	LC50	mortality	61	-	Mayer and Ellersieck, 1986	2
Ceriodaphnia dubia	<48h	95-99	N	ŝ	dw				48h	LC50	mortality	0.95	6	Ankley et al., 1991	2
	field population			Ū						2000	mortanty	0.00	C C		-
Cvclopoid copepods	free area	ta	Ν	S	tw	7.8	24	28	48h	LC50	immobility	30	7	Nagyi and Ferguson, 1968	3
		-5										1000-			
Daphnia magna	<72h	ag	N	S		7-7.8	22		24h	EC50	immobility	3500	8	Devillers et al., 1985	3
Daphnia pulex	< 24h		N	S	rw	7.4-7.8	16	47	48h	EC50	immobility	0.16	9	Sanders and Cope, 1966	2
Daphnia pulex	1st isntar	60	Ν	S		7.4	15	44	48h	EC50	immobility	0.18		Mayer and Ellersieck, 1986	2
Gammarus fasciatus			Ν	S	rw	7.1	21	47	96h	LC50	mortality	3.5	5	Sanders, 1972	2
Gammarus fasciatus			N	S	nw	74	21	hiah	96h	LC50	mortality	28	5 10	Sanders 1972	2
Gammarus fasciatus	immature	60	N	ŝ		74	15	272	96h	LC50	mortality	2.8	0,10	Mayer and Ellersieck 1986	4*
Gammarus fasciatus	immature	60	N	ŝ		7.1	15	11	06h	1.050	mortality	3.5		Mayer and Ellersieck, 1986	1*
Commonus locustris	immature	60	N	6		7.4	21	44	06h		mortality	130		Mayer and Ellersieck, 1900	
Gammarus lacustris	ininature	00	IN N	0		7.4	21	44	9011 06h	LC50	mortality	130		Sondoro 1060	-
Gammarus lacustris		4	IN N	3	TW	7.1	21	47	901	LC50	montality	130	F 40	Sanders, 1969	2
Palaemonetes kadiakensis	mature	tg	IN	5	nw	7.4	21	nign	960	LC50	mortality	12	5,10	Sanders, 1972	2
Palaemonetes kadiakensis	immature	60	N	S		1.4	15	272	96h	LC50	mortality	13.5	•	Mayer and Ellersieck, 1986	2
Simocephalus serrulatus	<24h		N	S	rw	7.4-7.8	16	47	48h	EC50	immobility	0.43	9	Sanders and Cope, 1966	2
Simocephalus serrulatus	<24h		N	S	rw	7.4-7.8	21	47	48h	EC50	immobility	0.56	9	Sanders and Cope, 1966	2
Simocephalus serrulatus	1st instar	60	N	S		7.4	15	44	48h	EC50	immobility	0.42		Mayer and Ellersieck, 1986	2
Simocephalus serrulatus	1st instar	60	Ν	S		7.4	21	44	48h	EC50	immobility	0.49		Mayer and Ellersieck, 1986	2
Insecta															
											impaired				
Chironomus riparius	4th instar	95	N	S	am				24h	EC50	movement	22.5	6,11	Fisher et al., 1993	2
					standard										
					reference			moderatel			impaired				
Chironomus tentans	4th instar	98	Ν	S	water	7.95	20	v hard	96h	EC50	movement	8.78	6	Pape-Lindstrom and Lvdv, 1997	2
Pteronarcys californica	naiads: 30-35mm	ta	N	ŝ	rw	71	15.5	47	96h	LC50	mortality	5		Sanders and Cope 1968	2
Pteronarcys californica	nymph	-9		0			16		96h	1050	mortality	49		Cone 1965	_ 4*
Pteronarcys californica	1st year class	tg	Ν	S		7.4	15	44	96h	LC50	mortality	5		Mayer and Ellersieck, 1986	4*
Pisces															
												35000-			
Brachydanio rerio	mature	ag	Ν	S		7.8-8	24		24h	EC50		100000	8	Devillers et al., 1985	3
Cyprinus carpio		>95							48h	LC50	mortality	33000	12	Fraters and Linders, 1991	4
Gambusia affinis	>25mm;	100	Ν	S	tw	7.8	22	28	48h	LC50	mortality	2914		Culley and Ferguson, 1969	2

	susceptible														
lctalurus punctatus	1.0g	60	Ν	S		7.4	18	44	96h	LC50	mortality	<280		Mayer and Ellersieck, 1986	2
Lepomis macrochirus	0.87g	tg					24		96h	LC50	mortality	23		Cope, 1965	4*
Lepomis macrochirus			Ν						96h	LC50	mortality	70		Verschueren, 1983	4
Lepomis macrochirus	1.3g	60	Ν	S		7.4	18	44	96h	LC50	mortality	59		Mayer and Ellersieck, 1986	2
Lepomis macrochirus	1.0g	60	Ν	S		7.4	18	272	96h	LC50	mortality	87		Mayer and Ellersieck, 1986	2
Lepomis macrochirus	0.9g	60	Ν	S		7.4	24	44	96h	LC50	mortality	22.5		Mayer and Ellersieck, 1986	2
Micropterus salmoides	0.8g	60	Ν	S		7.4	18	272	96h	LC50	mortality	115		Mayer and Ellersieck, 1986	2
Oncorhynchus mykiss	0.9g	60					13		96h	LC50	mortality	12		Cope, 1965	4*
Oncorhynchus mykiss	0.9g	tg	Ν	S		7.4	12	44	96h	LC50	mortality	11.9		Mayer and Ellersieck, 1986	2
Oncorhynchus mykiss		>95							48h	LC50	mortality	70	12	Fraters and Linders, 1991	4
Oreochromis niloticus	2wk, 1 inch		S	tw				48h		LC50	mortality	35	6	Tejada et al., 1994	4
Poecilia reticulata		>95							48h	LC50	mortality	4000	12	Fraters and Linders, 1991	4
					standard										
					quality										
					dilution										
Rasbora heteromorpha	1.3-3cm	99.5	Ν	R	water	7.2	20	20	48h	LC50	mortality	11500	13,14	Alabaster, 1969	2
Amphibia															
Pseudacris triseriata triseria	tadpole, 0.2g	60	Ν	S		7.4	16	272	96h	LC50	mortality	>3200		Mayer and Ellersieck, 1986	2

a According to Klimisch et al., 1997

- 1 Badly described study; no mention on purity or controls
- 2 7.5g organism/Liter
- 3 24h exposure and 24 or 48h recovery
- 4 Only 0% or 100% mortality observed. 100% mortality at 0.5 mg/l and three different temperatures; no other concentrations tested.
- 5 TLm is used as LC50
- 6 Results based on nominal concentrations a.i.
- 7 Field population used; species and age unknown
- 8 French study with english abstract; toxicity not given in concentrations but in classes.
- 9 Purity unknown
- 10 Hardness reported as 'high', probably 272 mg CaCO3/L (reported in Mayer and Ellersieck)
- 11 Objective of the study was to determine QSARs. Some details are missing, but the experiment seems to be performed well. Animals that were immobile after 24 hours, had died after 48 hours. So this EC50 is approximately the 48 LC50.
- 12 Hungarian study with english summary
- 13 Standardised procedure according to Pesticides Safety Precaution Scheme, 1966.
- 14 Median lethal concentrations determined by graphical interpolation

Table A2.15. Chronic toxicity of mevinphos to freshwater organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	т [⁰С]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Algae															
											Dry matter				
Scenedesmus obtusiusculus						7	25-30		8d	NOEC	increase	50000	1,2	Fraters and Linders, 1992	4
a According to Klimisch e	t al., 1997														

Notes:

1 Purity unknown

2 Hungarian study with abstract in English and figure and table subscriptions in German

Species	Species	Purity	Α	Test	Test water	рΗ	Т	Salinity	Exp.	Criterion	Test	Value	Notes	Reference	Reliability
	properties	[%]		type			[ºC]	[‰]	time		endpoint	[ug/l]			index ^a
Mollusca															
Crassostrea virginica	juvenile	100	N	F			22	30	96h	EC50		>1000		Mayer, 1986	2
Mercenaria mercenaria	21g		N	S	saline well water	8	20	24	96h	NOEC	mortality	>25000	1	Eisler, 1970	2
Nassa obsoleta	0.16g		N	S	saline well water	8	20	24	96h	NOEC	mortality	>25000	1	Eisler, 1970	2
Oyster	juvenile		Ν	F	nw		22	30	48h	EC50	shell growth	>1000	2	Butler, 1964	3
Cructoooo															
Crancon sentemeninosa	0.25a		N	\$	0.4/	8	20	24	48h	1 C 50	mortality	13	315	Fisler 1969	2
Palaemonetes vulgaris	0.23g 0.47g		N	S	nw	8	20	24	48h	1.050	mortality	79	346	Eisler 1969	2
Paqurus Iongicarous	0.28g		N	S	nw	8	20	24	48h	1.050	mortality	33	347	Eisler 1969	2
Penaeus aztecus	iuvenile	100	N	F	1177	0	24	32	48h	EC50	montanty	150	0,4,7	Maver 1986	2
	javonno	100		•				02	Ton	2000		100		Mayer, 1000	-
Pisces															
Anguila rostrata	0.14a		Ν	S	nw	8	20	24	96h	LC50	mortality	65	3.4	Eisler, 1970	2
Cyprinodon variegatus	juvenile	100	Ν	F			24	31	48h	LC50	mortality	640	-,	Mayer, 1986	2
Fundulus heteroclitus	42mm		Ν	S	nw	8	20	24	10d	LC50	mortality	13	3,4,8	Eisler, 1970	2
Fundulus heteroclitus	42mm		Ν	S	nw	8	20	24	96h	LC50	mortality	65	3,4,8	Eisler, 1970	2
Fundulus heteroclitus	2.5g		N	S	nw	8	20	24	96h	LC50	mortality	300	3,4	Eisler, 1970	2
Fundulus majalis	6.5g		N	S	nw	8	20	24	96h	LC50	mortality	75	3,4	Eisler, 1970	2
Menidia menidia	0.8g		N	S	nw	8	20	24	96h	LC50	mortality	320	3,4	Eisler, 1970	2
Mugil cephalus	12.6g		N	S	nw	8	20	24	96h	LC50	mortality	300	3,4	Eisler, 1970	2
Sphoeroides maculatus	100g		N	S	nw	8	20	24	96h	LC50	mortality	800	3,4,9	Eisler, 1970	2
Thalassoma bifasciatum	5.4g		Ν	S	nw	8	20	24	96h	LC50	mortality	74	3,4	Eisler, 1970	2

Table A2.16. Acute toxicity of mevinphos to marine organisms.

a According to Klimisch et al., 1997

- 1 100% survival after 96h exposure, and also after 133d recovery period
- 2 Vague description of test conditions, no controls, no description of test compound or purity, could very well be expressed in commercial formulation instead of a.i.
- 3 Results reported as nominal concentration a.i./L
- 4 Following procedure of American Public Health Association
- 5 96h LC50 = 11 ug/L
- 6 96h LC50 = 69 ug/L
- 7 96h LC50 = 28 ug/L
- 8 Unclear how many fish/L are used.
- 9 5.3g fish/L.

Table A2.17. Acute toxicity of tolclofos-methyl to freshwater organisms.

Species	Species properties	Purity [%]	Α	Test type	Test water	рН	т [ºC]	HH [mg	Exp. time	Criteri on	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Algae															
Scenedesmus quadricauda		98.3		s					96h	EC50		>5600		Baumann et al., 1991	3
Scenedesmus quadricauda		98.3	Ν	ŝ	am		20		7d	EC50		>5600	1.2.3	Anonymous, 2004	3
Scenedesmus quadricauda		98.3		ŝ	am		20		7d	ErC50	growth rate	>5600	3.10.11.12	Visser and Linders. 1992	3
						7.3 (start):					3		-,,	,	
Scenedesmus subspicatus		98.3	Y	S	am	8.6-9.7 (end)	23-24		72h	EC50	biomass	780	4.5.6.7.8	Anonymous, 2004	1
,						7.3 (start):							,-,-, ,-	,,	
Scenedesmus subspicatus		98.3	Y	S	am	8.6-9.7 (end)	23-24		72h	EC50	arowth	>1100	4.5.6.7.8	Anonymous, 2004	1
,						7.1-7.3 (start):					5		,-,-, ,-	,,	
Scenedesmus subspicatus		50	Y	S	am	7.6-9.2 (end)	20-24		72h	EC50	biomass	650	4.6.7.8.9.10	Anonymous, 2004	1
,						7.1-7.3 (start);							,-, ,-,-, -	,,	
Scenedesmus subspicatus		50	Y	S	am	7.6-9.2 (end)	20-24		72h	EC50	growth rate	>1700	4,6,7,8,9,10	Anonymous, 2004	1
,						· · · ·					0				
Crustacea															
Daphnia magna	1st instar	50		S	rw	8	21	202	24h	EC50	immobility	19900	1,13	Visser and Linders, 1992	3
Daphnia magna		99.8	Y	S		7.9-8.1	20-21		48h	EC50	immobility	48000	1,4,5,7,8,14	Anonymous, 2004	3
Daphnia magna		50	Ν	S		8	21		24h	EC50	immobility	5200	1,2,5,15	Anonymous, 2004	3
Daphnia magna		50	Y	S		7.9-8.2	20-21	160	48h	EC50	immobility	30000	1,4,5,7,8,16	Anonymous, 2004	3
Pisces															
Brachydanio rerio	2.1cm	50		F	rw		20	21.5	96h	LC50	mortality	154400	1,17	Visser and Linders, 1992	3
Cyprinus carpio		99.8	Y	R		7.3-7.8		50-70	96h	LC50	mor/immo	2000	1	Crommentuijn et al., 1997	3
Cyprinus carpio	0.46g	99.8	Y	R	dtw	7.3-7.8	23	50-70	96h	LC50	mor/immo	1980	1,18	Visser and Linders, 1992	4*
Cyprinus carpio	4.5cm	50		S	rw	7.5	22	280.5	96h	LC50	mortality	333200	1,19	Visser and Linders, 1992	3
Lepomis macrochirus	0.48g	50		S	rw	7.52	22	45.5	96h	LC50	mortality	118000	,120	Visser and Linders, 1992	3
Oryzias latipes	0	99.8	Y	R		7.3-7.8		50-70	96h	LC50	mor/immo	2600	1	Crommentuijn et al., 1997	3
Oryzias latipes	0.36g	99.8	Y	R	dtw	7.3-7.8	23	50-70	96h	LC50	mor/immo	2610	1,18	Visser and Linders, 1992	4*
Oncorhynchus mykiss	Ū.	99.8	Y	R		7.2-7.7		50-60	96h	LC50	mor/immo	790		Crommentuijn et al., 1997	2
Oncorhynchus mykiss	0.85g	99.8	Y	R	dtw	7.2-7.7	15	50-60	96h	LC50	mor/immo	790	18	Visser and Linders, 1992	4*
Oncorhynchus mykiss	8cm	50		S	rw	7.5	16	280.5	96h	LC50	mortality	211000	1,19	Visser and Linders, 1992	3
Oncorhynchus mykiss	0.85g; 3.75cm	99.8	Y	R	dw	7.2-7.7	15		96h	LC50	mortality	870	2,15,21	Anonymous, 2004	3
Oncorhynchus mykiss	5cm; 0.8-1.9 q	99.8	Y	F		6.5-7.6	11-13	42	96h	LC50	mortality	690	4,5,7,8,22	Anonymous, 2004	1
Oncorhynchus mykiss	, 0	50	Ν	S			11-13		96h	LC50	mortality	26000	1.8.15	Anonymous, 2004	3
Oncorhvnchus mvkiss	5cm: 0.8-1.9 a	50	Y	R		6.6-7.3	12-15	42	96h	LC50	mortality	>20000	1.4.5.7.8.23.24	Anonymous, 2004	3
Lepomis macrochirus	4.6g	50		S	rw	7.52	12	45.5	96h	LC50	mortality	52000	1.20	Visser and Linders, 1992	3
Lepomis macrochirus		50	Ν	ŝ			21-22		96h	LC50	mortality	59000	1.8.15	Anonymous, 2004	3
											mortality.		.,-,		
Lepomis macrochirus	iuveniles	99.8	Y	F		7.7-8	21-22		96h	LC50	behaviour	>720	4.5.8.25.26	Anonymous, 2004	1
Lepomis macrochirus	4-5cm: 0.9-2.4 a	50	Ŷ	R		6.7-7.7	20-23	42	96h	LC50	mortality	>54000	1.4.5.7.8.27 28	Anonymous, 2004	3
Poecilia reticulata	····, ··· =·· 9	99.8	Ý	R		7.4-7.8	0	40-45	96h	LC50	mor/immo	3000	1	Crommentuiin et al., 1992	3
Poecilia reticulata	3w: 40ma	99.8	Ý	R	dtw	7.4-7.8	23	40-45	96h	LC50	mor/immo	3000	1.18	Visser and Linders, 1992	4*

a According to Klimisch et al., 1997

- 1 Far above solubility limits
- 2 Reliability according to DAR: 3
- 3 No exponential growth to be expected after 7 days.
- 4 Data protection claimed
- 5 According to GLP
- 6 Mean measured concentrations were 53-97% of nominal concentrations
- 7 Results based on mean measured concentrations
- 8 Reliability according to DAR: 1
- 9 Mean measured concentrations were 56-80% of nominal concentrations
- 10 According to OECD 201
- 11 According to NEN 6506
- 12 Highest concentration tested was 5.6mg/L due to solubility limits
- 13 According to AFNOR protocols
- 14 Measured concentrations were 56-71% of nominal values
- 15 Results based on nominal concentrations a.i.
- 16 Measured concentrations were 54-89% of nominal values
- 17 According to guidelines issues by the British Pesticides Safety Precautions Scheme
- 18 Results based on measured concentrations
- 19 According BBA guidelines
- 20 According EPA guidelines
- 21 Measured concentrations were 70-95% of nominal concentrations
- 22 Measured concentrations were 50-82% of nominal concentrations
- 23 Mean measured concentrations were 58-68% of nominal concentrations
- 24 20 mg/L was highest concentration tested but at 2.2 mg/L solubility was exceeded
- 25 Measured concentrations were 93-100% of nominal concentrations
- 26 720 ug/L was the highest concentration tested
- 27 54 mg/L was highest concentration tested
- 28 Mean measured concentrations were 53-65% of nominal concentrations

Table A2.18. Chronic toxicity of tolclofos-methyl to freshwater organisms.

Species	Species	Purity	Α	Test	Test	рН	T	HH	Exp.	Criterion	Test endpoint	Value	Notes	Reference	Reliability
	properties	[70]		type	water		[-0]	CaCO ₃ /L]	ume			[ug/i]			muex
Algae															
Scenedesmus quadricauda		98.3	N	S					96h	NOEC	biomass	32		Crommentuijn et al., 1992	4*
Scenedesmus quadricauda		98.3		S	am		20		7d	NOErC	growth rate	5600	1,2,3	Visser and Linders, 1992	3
Scenedesmus quadricauda		98.3		S	am		20		7d	NOEbC	biomass	32	2,3	Visser and Linders, 1992	2
Scenedesmus quadricauda		98.3	N	S	am		20		7d	NOEbC	biomass	32	4	Anonymous, 2004	4*
						7.3								-	
						(start), 8.6-9.7					biomass and				
Scenedesmus subspicatus		98.3	Y	S	am	(end)	23-24		72h	NOEC	growth rate	220	5,6,7,8,9	Anonymous, 2004	2
						7.1-7.3									
						(start);									
				_		7.6-9.2					biomass and				
Scenedesmus subspicatus		50	Y	S	am	(end)	20-24		72h	NOEC	growth rate	310	2,5,6,8,9,10	Anonymous, 2004	2
Crustacea															
Daphnia magna		99.8	Y	F		7.4-8.1	20-21		21d	NOEC		26	6,8,9,11,12	Anonymous, 2004	1
Insocta															
Chironomus rinarius	3d old	99.8	Y	S	nw	5 5-7 7	19-21	42	28d	NOEC		250	56913141516	Anonymous 2004	3
ennenennue npanue		00.0	•	U		0.0 1.1	10 21	12	200	NOLO		200	0,0,0,10,11,10,10	, alony mode, 200 r	0
Pisces															
			Y												
Oncorhynchus mykiss	eggs	50	(weekly)	F		8.0-8.7	9-11		97d	NOEC	growth	12	5,6,9,17,18,19	Anonymous, 2004	1

a According to Klimisch et al., 1997

- Far above solubility limits 1
- According to OECD guideline 201 2
- According to NEN 6506 3
- Reliability according to DAR: 3 4
- Data protection claimed 5
- According to GLP 6
- Mean measured concentrations were 53-97% of nominal concentrations 7
- 8 Results based on mean measured concentrations
- 9 Reliability according to DAR: 1
- 10 Mean measured concentrations were 56-80% of nominal concentrations

- 11 LOEC = 62 ug/L
- 12 Mean measured concentrations were 89-129% of nominal concentrations
- 13 According to OECD guideline 219
- 14 LOEC = 500 ug/L
- 15 Including sediment with 2.4% OC in a sediment: water ratio of 1:4; analysis revealed that all of the test substance in the water column degraded to metabolites, but that 80% of the substance bound to sediment stayed the parent compound
- 16 Results based on nominal concentrations a.i.
- 17 Measured concentrations were within 20% of nominal concentrations
- 18 Results based on measured concentrations
- 19 LOEC = 28 ug/L

Table A2.19. Acute toxicity of triazophos to freshwater organisms.

Species	Species proper- ties	Purity [%]	Α	Test type	Test water	рН	т [ºС]	HH [mg CaCO₃/L 1	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^a
Cyanobacteria															
Anabaena flos-aquae		80	Ν	S	am		24		96h	EC50	growth	12745	1	Ma et al., 2004	2
Microcystis aeruginosa		80	Ν	S	am		24		96h	EC50	growth	13403	1	Ma et al., 2004	2
Microcystis flos-aquae		80	Ν	S	am		24		96h	EC50	growth	6164	1	Ma et al., 2004	2
Algae															
Scenedesmus subspicatus		92.1		S		7.7			96h	EC50	biomass	1430	2,3	Panman and Linders, 2001	2
Scenedesmus subspicatus		hostathion		S	am		25		72h	EC50	biomass	9100	4,5,6	Anonymous, 1993	2
Chlorella pyrenoidosa		80	Ν	S	am		24		96h	EC50	growth	30117	1	Ma et al., 2004	2
Crustacea															
Daphnia magna				S		7.7-7.8		91	48h	LC50	mor/immo	3		Crommentuijn et al., 1997	4*
Daphnia magna	1.2-1.4 mm					7.7-7.8	16	91	48h	LC50	immobility	3	7	Panman and Linders, 2001	2
Daphnia magna		Hostathion	Ν	S	70% tw; 30% dw				48h	LC50	mortality	1.3	3,6,8	Anonymous, 1993	2
Pisces															
Cyprinus carpio		40		S					96h	LC50	mortality	2240	9,10	Panman and Linders, 2001	2
Cyprinus carpio	1yr; 7-10cm	40		S			21		48h	LC50	mortality	180	11	Panman and Linders, 2001	2
Cyprinus carpio	4mo, 2.2-2.6g	hostathion	Y	S			22		96h	LC50	mortality	9000	12,13	Anonymous, 1993	2
Oncorhynchus mykiss		40		S					96h	LC50	mortality	16	9,14	Panman and Linders, 2001	2
Oncorhynchus mykiss	A I I I I	hostathion	Y	S					96h	LC50	mortality	38	12,15	Anonymous, 1993	2
Oreochromis niloticus	2wk, 1 inch			S	tw				48h	LC50	mortality	35	6	lejada et al., 1994	2
l ilapia mossambica									96h	LC50	mortality	24		Anonymous, 1993	4
Amphibia															
Bufo calamita	larvae: 1.5-2cm	40		S			22		48h	1.050	mortality	8000- 14000	11 16	Panman and Linders 2001	3
Buie Guiannia	10.100, 1.0 2011	10		5			~~		TON	2000	monunty	14000	11,10		0

a According to Klimisch et al., 1997

- 1 Not clear if concentrations are based on a.i.
- 2 According to OECD guidelines
- 3 Results based on the assumption of 100% purity
- 4 Based on OECD guideline 201
- 5 GLP
- 6 Results based on nominal concentrations a.i..
- 7 Purity unknowm
- 8 According to OECD guideline 202

- 9 According to BBA guidelines
- 10 LC50 as nominal concentrations hostathion (5600 ug/L); recalculated into active ingredient
- 11 No information on water type and correction for purity or use of nominal concentration
- 12 According to OECD guideline 203
- 13 All measured values were above or very close to 80% of nominal values
- 14 LC50 as nominal concentrations hostathion (41 ug/L); recalculated into active ingredient
- 15 Measured concentrations were always >70% of nominal concentrations
- 16 Validity assigned by Panman and Linders: 3

Table A2.20. Chronic toxicity of triazophos to freshwater organisms.

Species	Species proper-ties	Purity [%]	Α	Test type	Test water	рН	т [ºC]	HH [mg CaCO₃/L]	Exp. time	Criterion	Test endpoint	Value [ug/l]	Notes	Reference	Reliability index ^ª
Cyanobacteria Anabaena flos-aquae Microcystis aeruginosa Microcystis flos-aquae		80 80 80	N N N	S S S	am am am		24 24 24		96h 96h 96h	NOEC NOEC NOEC	growth growth growth	2000 5000 1000	1,2 1,3 1,4	Ma et al., 2004 Ma et al., 2004 Ma et al., 2004	2 2 2
Algae Scenedesmus subspicatus Scenedesmus subspicatus Scenedesmus subspicatus Chlorella pyrenoidosa		92.1 92.1 hostathion 80	N N	S S S	am am	7.7-10 7.7	25 24		96h 96h 72h 96h	NOEC NOEC NOEC NOEC	growth growth Biomass growth	100 100 1800 2000	5,6 7,8 1,2	Crommentuijn et al., 1997 Panman and Linders, 2001 Anonymous, 1993 Ma et al., 2004	4* 2 2 2
Crustacea Daphnia magna Daphnia magna	1-24h old	hostathion	Y	S					21d 21d	NOEC NOEC		0.32 0.01	8,9,10	Crommentuijn et al., 1997 Anonymous, 1993	4 2
Pisces Oncorhynchus mykiss Oncorhynchus mykiss	5mo; 2.3-5.5 g; 4.0-6.5 cm		Y	F					21d 21d	NOEC NOEC		0.5 0.5	11,12,13	Crommentuijn et al., 1997 Anonymous, 1993	4* 2

a According to Klimisch et al., 1997

- 1 Not clear if concentrations are based on a.i
- 2 LOEC = 5000 ug/L
- 3 LOEC = 10000 ug/L
- 4 LOEC = 2000 ug/L
- 5 According to OECD guidelines
- 6 Results based on the assumption of 100% purity
- 7 Based on OECD guideline 201
- 8 GLP
- 9 Based on OECD guideline 202
- 10 Mean measured concentrations were above 80% of the nominal values
- 11 Following OECD guideline 204
- 12 Measured recovery of test substance was between 82.6 and 114.7%
- 13 LC50 = 10 ug/L

Appendix 3. Description of mesocosm studies

Azinphos-methyl

<u>Emans et al., 1993</u>

Validation of extrapolation methods was carried out by comparing NOECs derived from multiple-species (semi-) field experiments with extrapolated values. The validation was carried out using data of 29 compounds. This summary only focuses on the tests with azinphos methyl.

TEST DESIGN

An on-line literature search was performed and several research centers and chemical industries were asked for data. The experiments were evaluated using criteria derived from Touart (1988), Dortland (1980) and Persoone (1988):

- 1. A distinct concentration-effect relationship should be obtained
- 2. A reliable multi-species NOEC should be derived
- 3. Several taxonomic groups, in more or less natural ecosystems, should be exposed to one test concentration for a longer period.
- 4. In each experiment several concentrations should be tested, consisting of one control and at least two test concentrations.
- 5. Each test concentration should have at least one replica.
- 6. The concentration of the test compound should be measured several times during the experiment
- 7. Physicochemical parameters like pH, temperature and hardness should be measured
- 8. Apart from effect parameters like population density and biomass, effect parameters on higher integration levels such as species diversity and species richness should be measured.

These criteria were modified, because none of the experiments were performed in accordance with all criteria. Criteria 1, 2, 3 and 6, with additionally criteria no. 7 for metals, were considered to be the most important criteria.

Studies were classified as reliable, less reliable and unreliable. An experiment was classified as reliable if it was carried out according to all criteria or was missing one or two less important criteria. If one important or several less important criteria were missing, the experiment was classified as less reliable. An experiment was classified as unreliable if several important criteria were missing.

NOECs were only calculated for direct effects that influenced the population level, e.g. effects on growth, reproduction and survival. Indirect effects were not considered because for these effects often no concentration-effect relationship could be distinguished.

Chronic single species were sought and evaluated. If no chronic data were available for algae, crustaceans and fish, then acute toxicity data were sought.

Calculations and statistics

NOEC-values were estimated by means of three procedures:

- 1. Comparison of effect parameters in treated and control systems.
- 2. Determination of the actual concentration at the start of recovery of the most sensitive species. For that purpose the concentration of the compound immediately after the last application was determined. In addition, the time needed for recovery after the last application was determined. By means of the estimated half-life of the test compound, the concentration at the time of recovery was determined. This last concentration was regarded as the NOEC.
- 3. Derivation of a NOEC from a LOEC as follows:
- If LOEC showed 10 to 20% effect, the NOEC was LOEC/2
- If LOEC showed $\geq 20\%$ effect and there was a clear concentration-effect relationship, the EC₁₀ was extrapolated and considered to be the NOEC
- If LOEC showed $\geq 20\%$ effect and there was no concentration-effect relationship, the NOEC was LOEC/3 in case of 20 to 50% effect and LOEC/10 in case of $\geq 50\%$ effect.

The authors commended on the second procedure that the first-order kinetics was not always applicable. Moreover, the authors mentioned that recovery time could often only be estimated inaccurately. Additionally, the NOEC was estimated from a point in time at which recovery starts, so from a point in time at which effects did occur. Finally, it was mentioned to be known that population recovery does not necessarily occur when the concentration decreases below the NOEC, but can be restricted to specific periods in the season. For these reasons, the authors consider the NOEC derived by the second procedure as less reliable or unreliable.

The authors commended on the third procedure that this procedure is based on expert judgment and that the mentioned factors are not experimentally determined. NOECs obtained with this procedure had to be carried out according to slightly different criteria as described under point 3, i.e. a distinct concentration-effect relationship and the use of more than one test concentration are not strictly necessary. On the other hand, the effect of the lowest concentration should be lower than 50%.

The extrapolation methods developed by Aldenberg and Slob (1993), Wagner and Løkke (1991) and an OECD guideline were used for validation. The extrapolation method of Wagner and Løkke (1991) is a variant of Aldenberg and Slob (1993), with the exception that it assumes a log-normal distribution instead of a log-logistic one. The OECD method estimates an environmental concern level assuming constant differences between acute and chronic toxicity and between laboratory and field effects. These assessment factors are presented below:

Assessment factors applied to derive environmental concern levels, according to the modified	EPA method.
Available information	Assessment factor
Lowest acute L(E)C50 value or QSAR estimate for acute toxicity	1,000
Lowest acute L(E)C50 value or QSAR estimate for minimal algae/crustaceans/fish	100
Lowest NOEC value or QSAR estimate for chronic toxicity	10
Lowest NOEC value or QSAR estimate for chronic toxicity for minimal algae/crustaceans/fish	10

Differences between NOECs and values calculated with the extrapolation methods, a model II regression procedure was performed. However, this method does not allow significance tests on the obtained values. For this reason, separate tests were performed for significance of correlation coefficients and for differences between means.

RESULTS

For azinphos methyl, a multi species NOEC could be obtained by the second and the third procedure from Dortland (1980). However, this study was considered to be less reliable. Endpoints analysed were chlorophyll, Gastropoda, Branchiopoda, Ostracoda, Copepoda and Diptera with Branchiopoda as most sensitive endpoints on which the NOEC was based and criteria were density and density recovery. NOEC derived by the second procedure was $0.25 \ \mu g/L$ and by the third procedure was $0.081 \ \mu g/L$. Extrapolation according to Aldenberg and Slob (1993) resulted in a HC₅ of 0.085 $\mu g/L$ with 50% confidence and a HC₅ of 0.015 $\mu g/L$ with 95% confidence. The method of Wagner and Løkke (1991) resulted in a HC₅ of 0.074 $\mu g/L$ with 50% confidence and a HC₅ of 0.018 $\mu g/L$ with 95% confidence. The OECD method resulted in a NOEC of 0.01 $\mu g/L$.

Data gathered for all 29 substances were used to analyze consistency of multiple species NOECs and endpoints extrapolated by the three methods described in the Methods section. Correlations of multiple species NOECs were significant for both reliable and unreliable studies for Aldenberg and Slob (1993) with 95% confidence, for Wagner and Løkke (1991) with 95% confidence. Comparison of Aldenberg and Slob with Wagner and Løkke with multispecies NOEC showed that reliable and less reliable studies did not correlate significantly with Aldenberg and Slob (1993) and Wagner and Løkke (1991), both with 50%

confidence. Unreliable study NOECs correlated with both Aldenberg and Slob (1993) and Wagner and Løkke (1991) with 50% confidence at 0.05 significance level.

CONCLUSIONS FROM THE AUTHORS

Conclusions from the authors were not drawn at substance level. On basis of the results of the study, the authors saw no reason to believe that organisms differ in sensitivity under field and laboratory conditions. The reliability of both the second and third procedure to obtain a multispecies NOEC was found to be questionable.

EVALUATION OF THE SCIENTIFIC RELIABILITY OF THE FIELD STUDY

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? Answer: unclear. The underlying study of Dortland (1980) was not evaluated in this article.
- 2. Is the description of the experimental set-up adequate and unambiguous? Answer: no. See answer above.
- 3. Is the exposure regime adequately described? Answer: no. See answer above.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Answer: no. See answer above.
- 5. Is it possible to evaluate the observed effects statistically? Answer: no. See answer above.

It is concluded that this article only can not be used for to estimate azinphos methyl toxicity, because underlying data of Dortland (1980) were not evaluated in the present article.

EVALUATION OF THE RESULTS OF THE STUDY

- Criteria to classify the studies were not clear. For instance, which criteria could be missed in order to still consider a study reliable?
- Indirect effects were not considered because for these effects often no concentration-effect relationship could be distinguished.
- From the study could not be extrapolated which criteria were not meet in order to classify the study of Dortland (1980) as a study with shortcomings or as less reliable.
- For the OECD method was not reported on basis of what data and assessment factors the NOEC was derived.

Since this article did not present the evaluation of the underlying field studies, the presented endpoints can not be judged on reliability. Therefore, this article can not be used for estimation of environmental risk.

<u>Giddings et al., 1994</u> Guidelines US EPA 1988

TEST DESIGN

The study was performed in ponds at the Kansas Aquatic Mesocosm Facility. Ponds were 20 by 20 m, resulting in 400 m², filled to a depth of 2 m. Sides of the ponds had a 2:1 slope, water volume was about 400 m³.

Sediment originated from a nearby farm pond, water was aged pond water from a reservoir on site. Fifty adult bluegill sunfish (*Lepomis macrochirus*) with an average weight of 59 g were introduced. Sex of the bluegill was not determined. Ponds were allowed to develop for eight months. Dense macrophyte beds grew throughout the mesocosms. *Potamogeton* sp., *Chara* sp. and *Naja* sp. were the most dominant macrophytes in the ponds.

Application, concentrations, replicates

Azinphos methyl was applied as Guthion 35 WP (29% azinphos methyl), starting on July 19th, 1988. Control, 0.056, 0.28, 1.3, 6.7 and 34 μ g Guthion/l. Application eight times at weekly intervals, treatments and control in duplicate. Simulation of Guthion application on cotton showed that Guthion would reach the

surface water via runoff, not via drift. Therefore, Guthion was mixed in a tank with pond water and then pumped back at three points, entering the water just below the surface, 1 m from shore. Application took 4 hours, water circulation thereafter an additional two hours.

Biological observations

Zooplankton samples were taken every four weeks from November 1987 until April 1988 and at weekly intervals thereafter. Sampling by vertical hauls with 20 cm diameter 80 µm mesh plankton nets, one tow in shallow zone and one tow in deep zone per mesocosm. Counting and identification using a zooplankton counting wheel.

Benthic sampling with a 230-cm² Ekman dredge twice per month. Three samples per location (one shallow and one deep per pond). Samples per location were combined, counted and identified.

Emerged adult insects were collected weekly sing semi-submerged inverted funnel traps with a 75 * 75 cm base. Per pond one trap in the shallow area and one trap in the deep area.

Emergence of odonates and some other insects, which normally emerge by crawling out of the water on a solid surface, vertical screens of 0.75 m^2 , extending approximately 30 cm above the water surface, were placed in shallow water near the north and south shore of each mesocosm. Exuviae were removed from the screens on weekly basis.

Four baited minnow traps per pond were placed for 24 hours, three to seven times per week, beginning half of July 1988. Fish were weighed, measured and returned to their pond. At test termination, fish were dissected to determine their sex.

Environmental conditions

Not evaluated.

Verification of concentrations

Periodically sampling of water and sediment for analysis of azinphos methyl and its oxygen analog. Water samples were taken at different depths, were composited and extracted by chloroform partition. Extracts were evaporated to dryness, redissolved and analysed by HPLC.

Sediment samples were of 5 cm deep were collected from each quarter of the pond with a coring device. Samples were frozen before analysis. Azinphos methyl and its oxygen analog were extracted from the sediment by refluxing with 50% methanol and 50% dichloromethane. Extract was partitioned with dichloromethane, dried through sodium sulfate and evaporated to dryness. Residues were dried down, submitted to silica gellcolumn chromatography and residues were collected. Residues were dissolved in acetonitrile:water and analysed by HPLC. Recovery of from quality control samples were 70 to 120%. Reported concentrations were not corrected for QC recovery. LOD was 0.02-0.04 µg/l in water and 25 µg/kg in sediment for both azinphos methyl and its oxygen analog.

Physical en chemical analyses

Temperature, conductivity, dissolved oxygen, pH, harndess alkalinity, suspended solids, total Kjeldahl nitrogen and total phosphorus. Frequency of measurements were not reported.

Calculations and statistics

Williams' Test and linear regression. Ln-transformation of abundances and of mean actual concentrations. Fish survival, length and weight were not transformed.

Linear regression was performed on the portion of the exposure gradient where the exposure-response relationship was the strongest. The resulting regression equation was then used to estimate the EC_0 .

RESULTS

Chemical analysis

Azinphos methyl concentrations in water declined rapidly after application, i.e. more than 90% within a week. Half-life ranged from 1 to 2 days. Peak concentrations in the two replicates of the highest treatment level were 22 and 26 μ g product/L. After six days, concentration in the two replicates of the highest treatment was 4.8 and 1.8 μ g/L, corresponding to 15 and 7% of the peak concentration, respectively. Actual concentrations in the water column were summarized as follows:

Azinphos meth	yl concentrations in	the water phase	. This table is co	pied from the orig	inal article.
---------------	----------------------	-----------------	--------------------	--------------------	---------------

Azinphos methyl concentration (µg/l) Nominal concentrations^a Mean peak^b 55-day average 0.056 0.054 0.023 0.056 0.055 0.027 0.28 0.19 0.078 0.28 0.24 0.13 1.3 0.89 0.29 1.3 1.0 0.45 4.2 6.7 1.2 6.2 3.1 6.7 10 34 26 34 33 16

^a: expected concentration immediately after each application

^b. mean of eight peak concentrations measured with 4 hours after each application

^c: calculated by integrating the area under the concentration vs. time curve for each pond

Physical en chemical analyses

No results were presented.

Fish

Fish began reproducing before the first application. No fish were trapped from any of the three highest dosed mesocosms (average $\geq 3.1 \ \mu g as/l$), but in all other cosms. During August, the 3 to 4 cm size class was the most frequently trapped in the controls and lower dosed mesocosms ($\leq 0.13 \ \mu g/l$) and the 2 to 3 cm class in the higher dosed mesocosms (0.29 to 1.2 $\mu g/l$). Juveniles longer than 4 cm were trapped only in mesocosms with mean concentrations of $\leq 0.13 \ \mu g/l$. In September and October, the 3 to 4 cm size class was the most frequently trapped size class at $\leq 1.2 \ \mu g/l$. Dead adult and juvenile fish were observed within two days in the cosms with mean actual concentration of $\geq 1.2 \ \mu g as/l$. After the second application dead adults also appeared at 0.45 $\mu g as/l$. At the end of the treatment period, 36 to 40 dead adults had been collected from the three cosms with the highest actual concentrations, eight dead from the cosm with 1.2 $\mu g/l$ average concentration, 7 from the 0.45 $\mu g/l$ cosm and one from one of the control cosms. Findings after drainage in November are presented below:

original art	licic.											
Nominal Mean	Control	Control	0.056	0.056	0.28	0.28	1.3	1.3 1.0	6.7 4 2	6.7 6.2	34 26	34 33
peak	Ū	0	0.004	0.000	0.10	0.24	0.00	1.0	7.2	0.2	20	00
Mean	0	0	0.023	0.027	0.078	0.13	0.29	0.45	1.2	3.1	10	16
actual												
Number of adults	44	39	36	38	37	39	42	23	1 ^s	0 ^s	0 ^s	0 ^s
Adult biomass	3,377	2,909	2,795	2,890	3,059	3,270	3,051	1,567	107 ^s	0 ^s	0 ^s	0 ^s
(g)												
Average adult weight (g)	77	75	78	76	83	84	73°	68°	107			
Average adult length (cm)	15.6	15.9	15.6	15.6	16.2	16.0	15.2 ^s	15.1 ^s	17.5			
Number of	7,869	9,213	7,050	6,135	11,932	7,902	14,307	9,589	4,248 ^s	0 ^s	0 ^s	0 ^s
Juvenile biomass	1,017	1,917	2,275	1,363	1,989	1,270	2,375	1,297	882	0 ^s	0 ^s	0 ^s
Average juvenile weight (g)	0.13	0.21	0.32	0.22	0.17	0.16	0.17	0.14	0.21			
Average juvenile length	2.15	2.32	2.92	2.33	2.22	2.14	2.24	2.02	2.36			

Numbers, lengths and weights of bluegill sunfish collected after test termination. Table copied from the original article

(cm) Total biomass (a)	4,394	4,826	5,070	4,253	5,048	4,540	5,426	2,864	989 ^s	0 ^s	0 ^s	0 ^s
(g)												

^s: significantly different from the control

Estimated EC₀ values were 0.20 μ g/l for adult umber, 0.17 μ g/l for adult biomass, 0.29 μ g/l for total biomass, 0.64 μ g/l for juvenile number and 0.58 μ g/l for juvenile biomass.

Zooplankton

During the treatment period, rotifers and copepods dominated the controls, cladocerans were relatively scarce. Copepod abundance increased significantly on the 8th of August the four highest treatments, on the 22nd of August in the two highest treatments, in the six highest treatments on the 5th of September, in four highest on the 19th of September, in no treatment on the 3rd of October and in the two highest treatments on the last sampling occasion (17th of October).

Abundances of cladocerans were similar to the control in all treatments for the whole testing period. Exceptions were the first samplings after application (25^{th} of July) in which significant differences were found for the two highest treatments. However, at that sampling period one and four individuals were found in the controls and in both the two highest treatments no individuals were found. Another exception is the last sampling period in which higher abundances compared to the control were found in the 0.29, 0.45, 1.2, 3.1, 10 and 16 µg/l treatments. The authors report that cladocerans data suggest that Guthion concentrations of at least 3.1 µg/l (mean) affect this taxa.

Rotifers were significantly affected in any of the treatments.

EC₀-values could not be calculated due to no consistent exposure-response trends.

Macroinvertebrates

Pond insect communities were dominated by dipterans. Significant reductions in dipteran densities in the two highest treatments were observed. EC_0 -values were 1.26 µg/l for benthic dipterans and 1.43 µg/l for emergent dipterans. Most abundant dipterans were the Chironomidae. Chironomidae and Chironomini were significantly lower in the two highest treatments compared to the controls. EC_0 -values for benthic Chironomidae were 1.23 µg/l and 0.61 µg/l for emergent Chironomidae. For Chironomini, EC_0 -values were 0.91 µg/l for benthic sampled species and 0.26 µg/l for emergence traps species.

Ceratopogonidae were most abundant in the ponds exposed to 1.2 and 3.1 μ g/l and least abundantn in ponds exposed to 10 and 16 μ g/l. The EC₀-values for Ceratopogonidae were 0.98 μ g/l for the benthic samples and 7.74 μ g/l for the emergence traps.

Abundances of benthic and emergent ephemeropterans were significantly reduced in the 10 and 16 μ g/l cosms. The EC₀-values for ephemeropterans were 0.59 and 1.19 μ g/l, respectively.

Odonates occurred in emergent samples, but rarely in benthic samples. A dose-response relationship was found for odonates abundance, but no significant differences between controls and treatments were found. The EC_0 -value for emergent odonates was estimated to be 16.7 µg/l.

Abundance of snails was higher in treatments of $\geq 0.29 \,\mu g/l$.

Conclusions from the authors

The authors found that no EC_0 -values or significant reductions occurred at $\leq 0.13 \ \mu g/l$. At 0.29 $\mu g/l$, the EC_0 -values were exceeded for adult bluegill growth and for two major insect taxa, while abundances of snails and copepods increased. At 1.2 $\mu g/l$, effects were found to be evident for adult and juvenile bluegill and for most insect taxa. The lowest LOEC for Guthion was found to be 0.29 $\mu g/l$ on basis of mean actual concentration. The effects of Guthion were summarized as follows:

Summary of the effects of Guthion. Table is copied from the original article.

Nominal (µg/l)	1.3	1.3	6.7	6.7	34	34	
Mean peak	0.89	1.0	4.2	6.2	26	33	
Mean actual	0.29	0.45	1.2	3.1	10	16	
Adult bluegill number, biomass	\downarrow	Ļ	↓	↓	↓	↓	
Juvenile bluegill number, biomas	s		↓	\downarrow	↓	↓	
Cladocerans				?	\downarrow	\downarrow	
Rotifers						?	
Copepods	1	↑	↑	↑	1	1	
Dipterans benthic					\downarrow	\downarrow	
Dipterans emergent					\downarrow	\downarrow	
Chironomidae benthic					\downarrow	\downarrow	
Chironomidae emergent					\downarrow	\downarrow	
Chironomini benthic					Ļ	\downarrow	
Chironomini emergent			\downarrow	\downarrow	\downarrow	\downarrow	
Pseudochionomini benthic			\downarrow	\downarrow	Ļ	\downarrow	
Tanytarsini emergent			\downarrow	\downarrow	Ļ	\downarrow	
Ceratopogonidae benthic							
Ceratopogonidae emergent							
Ephemeropterans benthic					\downarrow	\downarrow	
Ephemeropterans emergent					Ļ	\downarrow	
Odonates emergent					?	?	
Snails benthic	1	1	↑	1	↑	↑	

↑↓: significantly different from the control. ?: presumed negative effect, based on conservative interpretation of data.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? Answer: yes. The period in which the test systems were allowed to reach equilibrium was relatively long (eight months).
- 2. Is the description of the experimental set-up adequate and unambiguous? Answer: yes. However, analytical method was not mentioned.
- 3. Is the exposure regime adequately described? Answer: yes.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Answer: unclear. Azinphos methyl is an insectide and invertebrates are included in the test. However, fish are added as well, which may have suppressed effects on the invertebrates.
- 5. Is it possible to evaluate the observed effects statistically? Answer: no. However, most statistical results are presented.

Evaluation of the results of the study

- Phytoplankton was not assessed.
- Environmental conditions were not reported
- The EC_0 -values were estimated by performing linear regression was performed on the portion of the exposure gradient where the exposure-response relationship was the strongest. The resulting regression equation was then used to estimate the EC_0 . This procedure is considered to be sensitive to personal choices. In view of the figures presented in the article, the resulting EC_0 -values seem to have very low confidence.
- Azinphos methyl is an insecticide. Invertebrates are expected to be affected by this substance. Introduction of fish may have biased test outcome.
- Effects on zooplankton are considered to be indirect (increase in abundance, probably due to reduced predation pressure.
- Effects on macroinvertebrates are considered to be direct. However, statistics on macroinvertebrate taxa are performed on abundances summed for the entire treatment and post treatment interval.

Below, the effects as reported by the authors are presented. Effects on fish variables and on macroinvertebrates are based on effects observed at the end of the study and on mean abundance during the

rivm

whole study period. If effects on these variables are seen, it can not be excluded that effects have phased out at test termination. Therefore, effects on these variables are classified as class effect 4.

Summary of effect classes observed for several categories of endpoints in the outdoor enclosure s	study
treated with azinphos methyl. Effect classes are applied after de Jong et al. (2006).	

	Treatm	ent level	s							
Nominal	0.056	0.056	0.28	0.28	1.3	1.3	6.7	6.7	34	34
Mean peak	0.054	0.055	0.19	0.24	0.89	1.0	4.2	6.2	26	33
Mean actual	0.023	0.027	0.078	0.13	0.29	0.45	1.2	3.1	10	16
Zooplankton										
Copepods	1	1	1	1	2-3A↑	2-3A↑	3A↑	3A↑	4↑	4↑
Cladocerans	1	1	1	1	4↑	4↑	4↑	4↑	4↑	4↑
Rotifers	1	1	1	1	1	1	1	1	1	1
Macroinvertebrates										
Dipterans benthic	1	1	1	1	1	1	1	1	4↓	4↓
Dipterans emergent	1	1	1	1	1	1	1	1	4↓	4↓
Chironomidae benthic	1	1	1	1	1	1	1	1	4↓	4↓
Chironomidae emergent	1	1	1	1	1	1	1	1	4↓	4↓
Chironomini benthic	1	1	1	1	1	1	1	1	4↓	4↓
Chironomini emergent	1	1	1	1	1	1	4↓	4↓	4↓	4↓
Pseudochionomini benthic	1	1	1	1	1	1	4↓	4↓	4↓	4↓
Tanytarsini emergent	1	1	1	1	1	1	4↓	4↓	4↓	4↓
Ceratopogonidae benthic	1	1	1	1	1	1	1	1	1	1
Ceratopogonidae emergent	1	1	1	1	1	1	1	1	1	1
Ephemeropterans benthic	1	1	1	1	1	1	1	1	4↓	4↓
Ephemeropterans emergent	1	1	1	1	1	1	1	1	4↓	4↓
Odonates emergent	1	1	1	1	1	1	1	1	?	?
Snails benthic	1	1	1	1	4↑	4↑	4↑	4↑	4↑	4↑
Lepomis macrochirus ^a										
Number of adults	1	1	1	1	1	1	4↓	4↓	4↓	4↓
Total adult biomass	1	1	1	1	1	1	4↓	4↓	4↓	4↓
Adult weight and length	1	1	1	1	4↓	4↓				
Number of juveniles	1	1	1	1	1	1	4↓	4↓	4↓	4↓
Total juvenile biomass	1	1	1	1	1	1	1	4↓	4↓	4↓
Juvenile weight and length	1	1	1	1	1	1				
Most sensitive endpoint	1	1	1	1	4↓↑	4↓↑	4↓↑	4↓↑	4↓↑	4↓↑

?: presumed negative effect, based on conservative interpretation of data

The peak concentrations mainly caused the casualties among fish in the treatments. Mortality among fish caused a positive response on zooplankton taxa and snails. Negative effects were observed on macroinvertebrates. However, only statistics on mean abundance per taxa were performed and no statistics per sampling period. Therefore, as worse case it is assumed that effects on macroinvertebrates lasted until the end of the experimental period.

NOEC of the present study is the treatment with a mean peak of $0.24 \,\mu g/l$ and mean actual concentration of $0.13 \,\mu g/l$ during the application period. The NOEC of 0.13 $\mu g/l$ can be used for chronic exposure (i.e. 55 days).

Stay and Jarvinen, 1995

Results from the mixed flask culture (MFC) microcosms were related to littoral enclosure studies and fish toxicity tests. The littoral enclosure studies are reported to be described elsewhere (for azinphos methyl in Knuth et al (1992). The present evaluation only focuses on the microcosm experiments. TEST DESIGN

Mixed flask culture (MFC) microcosms were prepared by adding 50 ml of stock culture of organisms to 950 ml of media. Stock culture was a culture of organisms collected from a natural community which was acclimated to experimental conditions in 37 l aquaria for at least two months. Each microcosm was reinoculated weekly with 10 ml of stock culture to simulate refugia. The MFC microcosms did not contain any fish.

Application, concentrations, replicates

Single application of azinphos methyl. Control, 0.05, 0.2, 0.8, 2.0, 8.0, 20.0 and 50.0 μ g/l. Five replicates for the control and each treatment.

Biological observations

Net primary productivity (P) and dark respiration (R) were estimated by the amount of DO change during the 12-h light and 12-h dark periods, respectively. Production/respiration (P/R) ratios were calculated using 12 h net productivity and 12 h dark respiration.

Zooplankton counts were performed on samples taken on days 1, 2, 3, 5, 7, 10, 14, 21, 28, 35 and 42 after pesticide addition.

Verification of concentrations

Analyses according to Knuth et al, 1992.

Physical en chemical analyses

Measurements of DO and pH, frequency not reported.

Calculations and statistics

Because variance was not constant among replicate enclosures, before and after treatment comparisons were used to determine change.

Dunnett's procedure to determine significant differences between controls and treatments.

RESULTS

Chemical analysis

Results were not reported. Only a half-life of azinphos-methyl in the microcosms greater than two days was reported. In a table it was reported that over 27% loss of azinphos-methyl from the water phase in 48 h occurred.

Physical en chemical analyses

No results were presented.

Zooplankton

Effects on zooplankton are described only briefly and summarized accordingly. Below the table summarizing zooplankton effects is copied from the original article.

Table summarizing zooplankton effects after azinphos methyl application. This table is copied from the original article.

Effect category	μg/l	Microcosm response
NOEC	0.2	No significant change in any response variable
LOEC (most sensitive group)	0.8	Slight, but significant reduction in cladoceran populations
LOEC (less sensitive group)		
Amphipods	2.0	Populations reduced slightly followed by rapid recovery
Copepods	8.0	Populations increased by 100%, recovered to control levels by day 42
Ecosystem processes	<50	No effect on primary populations, respiration or P/R ratio
Major changes in predominant		
groups		
Amphipods	8.0	Populations almost eliminated (>95%)
Cladocerans	2.0	Populations almost eliminated (>95%), no recovery
Copepods	20	Populations increased by 400%, recovered to control levels by
		day 42
Ecosystem processes	>50	No major changes in primary production, respiration, or P?R
		ratio
Catastrophic changes	20	Most invertebrates reduced >95%; copepods reach maximum
		densities
Persistence of toxicant		Over 27% loss of azinphos-methyl from the water phase in 48 h

Conclusions from the authors

The NOEC was concluded to be the 0.2 μ g azinphos methyl/l treatment and the LOEC the 0.8 μ g/l treatment. However, the small magnitude of change that occurred at 0.8 μ g/l suggests that the true NOEC would be at concentrations much closer to 0.8 μ g/l than to 0.2 μ g/l.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? Answer: unclear. The cosms are small of size. Moreover, taxa are not further specified in the report. Also, it is unclear if the inoculations before test start resulted in a stable community.
- 2. Is the description of the experimental set-up adequate and unambiguous? Answer: no. Sampling frequencies are not reported.
- 3. Is the exposure regime adequately described? Answer: no. Method of application is not reported, sampling frequencies are not reported and LOD or LOQ are not reported. However, LOD or LOQ might be found elsewhere (i.e. Knuth et al, 1992).
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Answer: yes. Azinphos methyl is an insectide and invertebrates are included in the test.
- 5. Is it possible to evaluate the observed effects statistically? Answer: no. No rough data were presented.

Evaluation of the results of the study

The results presented in the article could not be reproduced, because no rough data were presented. Therefore, no dose-effect relationships could be evaluated as well as the course of effects in time. Moreover, no figures on actual concentrations were given, only an order of magnitude of degradation rate (i.e. half-life > 2 days in the water phase and > 27% loss of azinphos methyl within 48 hours).

The description of the degradation rate suggests that degradation of azinphos methyl was rapid. Therefore, this study can not be used for EQS-derivation for chronic exposure, but only for acute exposure.

The acute NOEC and LOEC (nominal concentrations of 0.2 and 0.8 μ g/l, respectively) can only be based on the data presented in the table copied from the article presented above. These effect concentrations should be used with outmost care within environmental quality standard setting, because of above mentioned reasons.

Tanner and Knuth, 1995

Guidelines

Not referred to.

TEST DESIGN

Adult bluegills were exposed to a single application of azinphos methyl in littoral enclosures situated in the littoral zone of a 2-ha mesotrophic pond located in Northern Minnesota. Enclosures were 5 x 10 m; two blocks of six each. Enclosures were built using three plastic walls with the natural shoreline constituting the fourth side (8th of May). Enclosures extended from the natural shore to about 1.3 m depth and had a mean water depth of 0.72 m and a mean water volume of 37 m³. Enclosed aquatic vegetation consisted primarily of *Typha* sp., *Chara* sp., *Najas flexilis, Potamogeton natans, Potamogeton foliosus* and *Potamogeton pusillus*. Sediment was characterized by unconsolidated and highly organic material. For additional information concerning the design and construction of littoral enclosures is referred to several references. After installation of the enclosures, native fish were removed with minnow traps. Adult bluegills were commercially obtained and sexed. Eight males and eight females were randomly assigned to the enclosures (22nd of May). Fish that died were replaced until 10th of June. Ten spawning substrates per enclosure were placed before the addition of the bluegills. Spawning substrates were black plastic pans filled with gravel and were placed in the sediment.

Application, concentrations, replicates

Single application of azinphos methyl (11^{th} of July) in the form of Guthion 2S (238 g as/l EC) over the entire surface of the enclosures with a hand-pressurized sprayer. Control, 1.0 and 4.0 μ g/l. Four replicates for the control and for both treatments.

Biological observations

Daily observation of behavior. Hatchability was assessed by placing a watch glass in the center of the spawning substrates to obtain subsamples of the embryos. Viability and time of swim-up were determined by siphoning a few of the larvae from the center of the nest.

Free swimming young-of-year were sampled weekly with diphnets (500 to 1000 μ m). These individuals were used for determination of total length and wet weight. Male and female ratio was determined at test termination as well as young-of-year and adult length and wet weight.

Zooplankton was sampled approximately on weekly basis using inverted funnel traps, four traps per enclosure, 24-h sampling period. Samples were counted for Cladocera, Copepoda, Ostracoda, Protozoa, Hydrachnida and Rotifera.

Environmental conditions

Mean alkalinity 97 mg/l, mean pH 8.0.

Verification of concentrations

Depth-integrated samples were taken after 1 h and after 1, 2, 4, 8 and 22 days after application. Analysis by GC after extraction with 20% dichloromethane: 80% hexane. LOD 0.24 μ g/l, LOQ 0.42 μ g/l, recovery was 94.4 \pm 22.0%. Mean relative percentage difference of enclosure duplicate samples was 11.1 \pm 3.7%. The CV for the 1.0 and 4.0 μ g/l treatment was 14.3 \pm 10.6% and 20.5 \pm 3.45%, respectively.

Physical en chemical analyses

Water temperatures were recorded daily and dissolved oxygen on weekly basis.

Calculations and statistics

Larval growth is described by linear regression. Growth was determined from the exposiential regression of wet weight relative to days after embryo hatch. Means of regression slopes for each treatment were compared by means of ANOVA. Larvae from the first and second spawning periods were used in these regressions. Larvae from the third and fourth spawning periods were not used because they were much younger and comprised only 1 % of the total biomass.

Spawning was expressed as percentage change in spawning before and after treatment. Zooplankton was analysed by two-way ANOVA to determine treatment and block effects for all dates sampled. Tukey's HSD procedure was used to compare all pairs of treatment means.

RESULTS

Chemical analysis

Maximum azinphos methyl concentrations were measured after 1 hour, i.e. 114.5 and 121.2% of nominal at 1 and 4 μ g/l, respectively. Concentrations decreased to levels below LOQ after 4 and 8 days, resulting in half-lives of 2.3 and 2.4 days and DT₉₅'s of 10.0 and 10.4 days, respectively. Maximum actual concentrations (after 1 h) ranged from 0.95 to 1.46 μ g/l in the 1 μ g/l enclosures and from 4.36 to 6.01 μ g/l in the 4 μ g/l enclosures.

Physical en chemical analyses

Not reported.

Fish

Behavioural effects at 4 μ g/l after 24 hours after application were coughing, rolling and darting swimming movements. Overall lightening or darkening of body coloration was observed. After 48 hours, one each fish was found in both a 1 and 4 μ g/l enclosure.

Spawning occurred in all enclosures except in one enclosure of 1 μ g/l. Bluegills spawned from June 8th to August 2nd with the majority (68%) spawning from June 18th to June 27th. The greatest reduction after treatment occurred in the 4 μ g/l enclosures (90%), followed by the controls (60%) and the 1 μ g/l treatment (30% reduction). The following table presented data on spawning, hatching success and male:female ratio.

	Number of (number	spawnings of nests)	Range of spawning dates	Mean percentage of embryo hatching	Male:female ratio
Treatment	Before application	After application	(day/month)	(range)	
Control	1(1)	2(1)	26/6-2/8	33 (0-100)	2:13
Control	1(1)		26/6	17 (17)	8:5
Control	1(1)	1(1)	19/6-27/6	92 (92)	4:4
Control	1(1)		26/6	20 (20)	5:11
1.0	0				7:6
1.0	3 (3)	1(1)	26/6-17/7	48 (0-88)	11:6
1.0	2 (2)	2 (2)	19/6-17/7	40 (6-70)	5:7
1.0	1(1)	1(1)	27/6-18/7	83 (66-100)	7:9
4.0	4 (3)	1(1)	19/6-16/7	30 (6-94)	10:7
4.0	1(1)		25/6	24 (24)	5:7
4.0	2 (2)		25/6-27/6	66 (35-97)	12:3
4.0	3 (2)		8/6-19/6	72 (72)	5:9

Number of bluegill spawnings, range of spawning dates, hatching success and male:female ratio. Table is adapted after a table in the original article.

Larval growth rates varied as much within treatments as among treatments. Means of length and weight regression slopes of the treatments were not significantly different from those of the control. Young-of-year biomass varied between blocks, treatments, enclosures and spawning periods. The first block of enclosures had a much lower total biomass (25.2 g) than the third block (226.4 g). Each of the control enclosures' total biomass was higher than all treated enclosures. Exception was an enclosure at 4 μ g/l where total biomass was higher than most of the controls. This specific enclosure had the highest measured 1-h actual concentration, i.e. 6.0 μ g/l. Total biomass of controls was not significantly different from the treatments.

Cladocerans, copepods (adults, copepodites, nauplii) and rotifers exhibited a succession of population peaks and only nauplii numbers were significantly reduced by treatment. Copepod nauplii were significantly reduced at 1 and 4 μ g/l compared to the control one week after pesticide application.

Conclusions from the authors

Azinphos-methyl were found to not have caused any significantly long-term effect on bluegill reproduction, embryo hatchability, larval survival until swim-up, year-of-young growth and total biomass. Absence of long-term effects was explained by the brief period of exposure.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? Answer: unclear. Native fish were removed from the enclosures and adult bluegills were introduced on the 22nd of May. Pesticide application took place on the 11th of July. From the pictures on zooplankton can not be concluded that between these two dates, a stable community was reached. PRC-analysis would have aided the evaluation of equilibrium state before pesticide application.
- 2. Is the description of the experimental set-up adequate and unambiguous? Answer: yes.
- 3. Is the exposure regime adequately described? Answer: yes.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Answer: unclear. The focus of the study was on the introduced fish. Zooplankton was identified at high taxonomic level.

5. Is it possible to evaluate the observed effects statistically? Answer: no. No rough data were presented. Data were evaluated by means of complex statistics, but not with PRC.

Evaluation of the results of the study

From the short half-life of azinphos-methyl in the present study can be concluded that the study can be used for short-term exposure, but not for chronic exposure EQS-derivation.

The results presented in the article could not be reproduced, because no rough data were presented. However, on basis of figures made for zooplankton taxa can be concluded that effects were consistent among treatment replicates.

For the experiment, native fish were removed from the enclosures and a non-native species (bluegills, *Lepomis macrochirus*) was introduced. From this species was reported that these are more sensitive to azinphos-methyl, responds faster and recover more slowly than other fish species. This was concluded from a study originating from 1961 and can not be validated from available toxicity tests.

Azinphos methyl is an insecticide. Invertebrates are expected to be affected by this substance. Introduction of fish may have biased the test outcome.

Effects on fish were not statistically founded, due to great data variation or small numbers of observations. Effects on copepod nauplii at 1 and 4 μ g/l one week after pesticide application were the only effects significantly underpinned. Therefore, the NOEC of the present study is considered to be below the lowest tested concentration (nominal concentration 1.0 μ g/l), which can be used for EQS-derivation for short-term exposure.

Dortland, 1980, chapter 6: Model ecosystems (MES) studies

Outdoor cosm experiments were performed spread over two consecutive years with parathion and azinphos methyl. The present evaluation only focuses on the results of the azinphos-methyl treatment. **Guidelines**

Not referred to.

TEST DESIGN

Four plastic containers were dug into the soil. Three containers were made of polythene and were 3x1x1 m. The fourth container was made of transparent Perspex and was 2.7x0.87x0.9 m.

The top of the containers was covered with wire-nettings with mesh size 11 mm. A sediment layer of 0.1 m was introduced and was collected from a watercourse without significant urban influences (Tutenburgse Wetering). Before introduction, the material was sterilized for one day by steaming under a sheet. Subsequently, the containers were filled with tap water, originating from deep groundwater. The polythene containers were filled in October 1975, the Perspex one in August 1976. Three weeks later *Elodea nuttallii*, *Ceratophyllum demersum*, *Callitrich* sp., *Potamogeton crispus* and *Potamogeton berchtoldii* were introduced. Snails, leeches, flatworms and oligochaete worms were introduced through the plant material. The containers were inoculated with microorganisms, small crustaceans, etc., by introducing 2 l fresh bottom sludge.

In each subsystem four cylinders of stainless-steel wire-netting were placed upright in the water and partially sunk into the bottom. These wire-netted cylinders were used for sampling of water and zooplankton. All four containers were divided into two subsystems at the start of the treatment period which lasted from the half of May to the half of August. Observations were made until half of October.

Application, concentrations, replicates

The experiment was partly performed in 1977 and partly in 1978. In 1977, one cosm was treated with azinphos-methyl to reach a final concentration of $1 \mu g/l$ and six other cosms were controls (one other cosm was treated with parathion). In 1978, two cosms were treated with azinphos-methyl against three controls (the remaining cosms were again treated with parathion).

The insecticide was equally distributed over the water surface and thoroughly mixed. A constant insecticide concentration was maintained by sampling the water column twice per week for chemical analysis. From these analyses was calculated how much of the active ingredient had degraded and how much should be

added to reach the initial concentration again. Chemical analyses and adding of pesticide took place twice a week.

Biological observations

Macrophytes were assessed at the end of May, half-way of August and at the end of October. Covering percentage in both the floating and submerse layer was estimated.

The wire-netted cylinders prevented that macrophytes developed dense vegetation over the whole area. Without the cylinders, repeated sampling would have resulted in a permanently suppressed layer of water plants. As an extra advantage, the author mentioned that the cylinders created open spots, thereby creating a higher diversity of niches. For sampling of zooplankton, a 1-m long, 44 cm i.d. Perspex tube was rapidly sunk into the cylinder. A zooplankton sample of a subsystem was made up of six subsamples. Zooplankton samples were sieved over a net with mesh 55 µm and counted.

Macrofauna was assessed at the start of both rounds of experiments, i.e. in November 1976 and 1977. At that time, half of the vegetation of the cosms was removed to prevent the vegetation becoming choked the year following, as well as to simulate the cleaning regime normally carried out in ditches in the Netherlands. The aquatic plants collected in this way were then searched for macrofauna, which were subsequently identified and counted.

Environmental conditions

Not reported.

Verification of concentrations

Analysis by GLC.

Physical en chemical analyses

Daily analysis of pH, dissolved oxygen and minimum and maximum temperature. Every two weeks measurement of total PO₄, orthoPO₄, NO₃, hardness as CaO and HCO₃. Monthly analysis of NO₂, NH₄, Ca, Mg, K and Cl. Chloride was measured every two months and conductivity twice a year.

Calculations and statistics

Not reported.

RESULTS

Chemical analysis

Average actual concentration in the period of 25^{th} of April to 15^{th} of August, 1977 was 0.81 µg/l. As incidental extremes were three events reported in which concentrations of 1.2, 1.2 and 1.1 µg/l were measured. In 1978, average actual concentration was 0.61 µg/l in the period of the 30^{th} of May to the 18^{th} of August, 1978. As incidental extremes, three events were reported, i.e. 0.10 and 1.1 µg/l and one undetectable concentration.

Azinphos-methyl concentrations were reported, sampled inside the cylinder and between vegetation, six hours after pesticide application. On the 15^{th} of July 1977, actual concentrations were reported measured in samples taken on the 15^{th} of July 1977 and on the 9^{th} of August 1977 between the vegetation or inside the cylinder. Actual concentrations on the 15^{th} of July 1977 were 0.98 and 0.80 µg/l inside the cylinder and between the vegetation, respectively. Actual concentrations on the 9^{th} of August 1977 were 0.94 and 0.92 µg/l, respectively.

Also, a vertical distribution of substance is reported to be measured, on the 25th of October 1977. Actual concentration on that day was 0.26 μ g/l in the "lower part water column", 0.25 μ g/l in "the upper part water column" and 0.26 μ g/l in the "total water column". Specification of lower part and upper part is not given. Calculated half-lives were 168 ± 50 hours in 1977 and 68 ± 34 hours in 1978, corresponding to 7 and 2.8 days, respectively.

Physical en chemical analyses

Average pH of all cosms ranged between 7.6 and 9.5 in 1977 and between 8.0 and 9.3 in 1978. Differences in pH were found to be generally small. The pH in the treated subsystem was lower on one sunny day compared to the control (20th of July 1977), but similar between subsystems two other sunny days (4th of July 1977 and 31st of May 1978).

Minimum temperature was 12.9-13.3 in 1977 and 12.9-13.2 in 1978. Maximum temperature was 15.0-16.7 in 1977 and 14.7-15.6 in 1978. The lower temperatures were found in cosms shaded by beech-hedges or by duckweed cover.

Oxygen concentrations were generally high, ranging between 5 and 19 μ g/l throughout 1977 and 1978. Other physicochemical variables are tabulated. Differences between subsystems and systems were found to be small.

Macrophytes

Elodea nuttallii was the dominant species in the pre-experimental period, comprising 50 to 95% of the vegetation. In 1977, hardly any *Elodea* was observed, but it was abundant again in 1978. *Ceratophyllum demersum* was virtually absent at that time, but became dominant in the following years. Generally, the vegetation was dense. However, large open areas were present in the subsystem treated with azinphosmethyl in 1977. These areas were filled with large algal mats of *Oedogonium* sp. until the end of the experimental period. The untreated subsystem hardly contained any of these algal mats. In 1978, no algal mats appeared in the azinphos-treated subsystem.

Zooplankton and macrofauna

Marked reductions were reported for *Daphnia* spp. in 1977 and for *Simocephales vetulus* in both 1977 and 1978. From the text and a figure can be extracted that *Simocephales vetulus* abundance decreased after pesticide application and abundance numbers tended to increase thereafter. However, control levels were not reached within the treatment period. Moreover, in 1977, after the application no recovery took place, which was thought to be due to the presence of algal mats. In 1978, recovery took place at the time the algal mats had disappeared (one month after the last application).

Similar effects were observed for *Daphnia* spp. In 1978, abundances had not recovered at the end of the experimental period. Data of 1977 were not presented.

For *Chydorus sphaericus*, *Graptoleberis testudinaria*, *Cyclopoida*, *Ostracoda* and *Chaoborus crystallinus* no effects were reported. This seems to be confirmed by the figures presenting zooplankton abundances in time. However, from the figure presenting 1977 data can be observed that no effects on *Chydorus sphaericus* could be observed for the treatment period, but abundances of this species declined more rapidly in time in the treated subsystem compared to the control subsystem. From the graph made for 1978, abundances in the control and treated subsystem look very similar.

For macrofauna, numbers were presented in a table. From the table, no differences between cosms can be distinguished.

Conclusion from the authors

Under near-natural conditions, 1 µg azinphos-methyl/l can strongly reduce populations of Cladocera for at least as long this concentration is maintained. Cyclopoida and Ostracoda were found not to be sensitive to the concentration of azinphos-methyl applied.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? Answer: yes.
- 2. Is the description of the experimental set-up adequate and unambiguous? Answer: no. Cosms were divided into halves. One subsystem was treated and the other one was considered to be the control. Thus, no replicates were present. Only the controls present in other cosms give a notion of the variance in biota data. Macroinvertebrates and macrofauna were only assessed at the end of the experimental periods.
- 3. Is the exposure regime adequately described? Answer: yes.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Answer: unclear. Zooplankton was assessed satisfactorily, but macrofauna was only analyzed once, after the experimental period.
- 5. Is it possible to evaluate the observed effects statistically? Answer: no. Treatments and controls were not replicated. Variation may be estimated with care on basis of the other subsystem controls.

Evaluation of the results of the study

In both 1977 and 1978, the zooplankton community was affected at 1 μ g/l. Although statistics was not performed on the data and no replicates were applied, from the presented figures can be deduced that zooplankton indeed was negatively and chronically affected by the pesticide treatment. The treatments had actual concentrations of 0.81 μ g/l and 0.61 μ g/l in the exposure periods of 1977 and

The treatments had actual concentrations of 0.81 μ g/l and 0.61 μ g/l in the exposure periods of 1977 and 1978, respectively. Therefore, the NOEC is considered to be < 0.61 μ g azinphos-methyl/l.

Appendix 4. Detailed bird and mammal toxicity data

Table A4.1. Toxicity of azinphoethyl to birds and mammals. Table A4.2. Toxicity of coumaphos to birds and mammals. Table A4.3. Toxicity of tolclofos-methyl to birds and mammals. Table A4.4. Toxicity of triazophos to birds and mammals

Species	Species properties	purity	Application route ^b	Exposure time	Criterion	Test endpoint ^c	Effect concentration gavage [mg/kg bs/d]	Effect concentration diet [mg/kg diet]	Notes	Reference	Reliability index ^ª
chicken	female		diet	30d	NOEC	body weight clinical or histological signs of		150	1	HSDB, 2007	2
chicken	female		diet	30d	NOEC	toxicity clinical signs of cholinesterase		>600	2	WHO, 1994	2
dog	young		diet	6 weeks	NOEC	poisoning		2.1	3	HSDB, 2007	2
dog	male and female		diet	32 months	NOEC	clinical signs of toxicity		30		WHO, 1994	2
mouse	male and female		diet	2 year	NOEC	carcinogenicity growth rate, food consumption,		>11.3	4	WHO, 1994	2
rat	male and female		diet	3 months	NOEC	mortality		>8	5	HSDB, 2007; WHO, 1994	2
rat	male		diet	16 weeks	NOEC	body weight		10	6	HSDB, 2007; WHO, 1994	2
rat	male		oral	28d	NOAEL	weight gain; signs of poisoning	>1			HSDB, 2007; WHO, 1994	2
rat	male and female		diet	2 year	NOEC	carcinogenicity		>32	7	WHO, 1994	2

Table A4.1. Bird and mammal toxicity data for azinphos-ethyl.

a According to Klimisch et al., 1997

b Studies with irrelevant application routes (single oral gavage, dermal, intreperitoneal, etc.) not included

c Studies with irrelevant endpoints (for instance, ChE activity) not included

- 1 LOEC = 300 ppm
- 2 600 ppm is highest concentration tested
- 3 LOEC = 3 ppm
- 4 32 ppm is highest concentration tested
- 5 8 ppm is highest concentration tested
- 6 LOEC = 50 ppm
- 7 32 ppm is highest concentration tested

Species	Species properties	purity	Application route ^b	Exposure time	Criterion	Test endpoint ^c	Effect conc. gavage [mg/kg bw/d]	Effect conc. diet [mg/kg diet]	Notes	Reference	Reliability index ^a
Anas platyrhynchos	10d	95	diet	5d	LC50			709	1	Hill et al., 1975	1
Anas platyrhynchos		98.25	diet		LD50			401.9		US-EPA, 2000	4
Colinus virginianus	14d	95	diet	5d	LC50			120	1	Hill et al., 1975	1
Colinus virginianus		98.25	diet		LD50			82.1		US-EPA, 2000	4
Coturnix c. japonica	14d	95	diet	5d	LC50			225	1	Hill et al., 1975	1
Phasianus colchicus	14d	95	diet	5d	LC50			318	1	Hill et al., 1975	1
dog	Beagles	98-99	diet	1 year	NOEC	systemic changes		90		US EPA, 2000	2
mouse	B6C3F1	95	diet	103 weeks	LOEC	carcinogenity		>10		US EPA, 2000	2
rabbit	American Dutch; 7d old	tg	oral gavage	13d	NOAEL	maternal toxicity	2		2	US EPA, 2000	2
rat	female; SPF Winstar	99.2	diet	2 year	NOEC	body weight		5		US EPA, 2000	2
rat	F33 Charles River CDBS; 6d	95	diet	103 weeks	NOEC	body weight maternal toxicity; clinical signs of		<10		US EPA, 2000	2
rat	old	tg	oral gavage	10d	NOAEL	cholinesterase toxicity	5		3	US EPA, 2000	2
rat	Sprague-Dawley	99	diet	2 generation	NOEC	systemic toxicity; reproduction		>25		US EPA, 2000	2
	Sprague-Dawley; 7-8			multi-					4		
rat	weeks; male and female	tg	diet	generation	NOEC	mean body weight of F1 generation		1		Astroff et al., 1998	3
	Sprague-Dawley; 7-8			multi-		Reproduction, litter size, food			5		
rat	weeks; male and female	tg	diet	generation	NOEC	consumption etc.		>25		Astroff et al., 1998	2

Table A4.2. Bird and mammal toxicity data for coumaphos.

a According to Klimisch et al., 1997

b Studies with irrelevant application routes (single oral gavage, dermal, intraperitoneal, etc.) not included

c Studies with irrelevant endpoints (for instance, ChE activity) not included

- 1 LC50 determined after 8 days; 5 days exposure followed by 3 days untreated diet. LC50 in mg/kg active ingredient. Report precedes Heath et al.,1972
- 2 NOEL for developmental effects >18 mg/kg day
- 3 NOEL for developmental effects >25 mg/kg day
- 4 NOEL is 1 ppm; effect at 5 ppm; no effect at 10 ppm. Thus, "Significance unclear". Well described study.
- 5 25 ppm is highest concentration tested

Species	Species properties	purity	Application	Exposure	Criterion	Test endpoint ^c	Effect conc.	Effect conc.	Notes	Reference	Reliability
			route ^b	time			gavage	diet			index ^a
							[mg/kg bw/d]	[mg/kg diet]			
Anas platyrhynchos	chicks	97.7	diet	5 d	NOEC	mortality, health, weight		5620		Anonymous, 2004	1
Anas platyrhynchos	41wks and eggs	97.7	diet	19 wk	NOEC	mortality, signs of toxicity; reproduction		500		Anonymous, 2004	1
Colinus virginianus	chicks	97.7	diet	5 d	NOEC	mortality, health, weight		5620	1	Anonymous, 2004	3
Colinus virginianus	22wks	97.7	diet	21 wk	NOEC	mortality, signs of toxicity; reproduction		500		Anonymous, 2004	1
dog	beagle	98.7	diet	6 mo	NOEC	increased liver weight		600		Anonymous, 2004	2
-	-	96.7 /				-				Anonymous, 2004	
dog	beagle	97.6	diet	1 yr	NOEC	changes in organ weight		400			2
mouse	ddY strain	97	diet	9 mo	NOEC	body weight gain		100		Anonymous, 2004	1
mouse	Crj:B6C3F1 strain	94.3	diet	2 yr	NOEC	body weight gain; food consumption		250		Anonymous, 2004	1
rabbit	New Zealand White Rabbits	98.7	oral	13 d	NOAEL	body weight gain; food consumption	300			Anonymous, 2004	1
rat	Sprague-Dawley		diet	32-34 d	NOEC	body weight gain		5000		Anonymous, 2004	2
rat	Sprague-Dawley	96.6	diet	90 d	NOEC	body weight gain; increased liver weight		1000		Anonymous, 2004	1
						body weight gain; increased liver and				Anonymous, 2004	
rat	Sprague-Dawley	97	diet	6 mo	NOEC	kidney weight		3000			1
rat	Fischer 344 CD®F rats	94.9-98.7	diet	>2 yr	NOEC	carcinogenity		>1000		Anonymous, 2004	1
rat	Sprague-Dawley	97.9-98.7	diet	100 wk	NOEC	reproduction		>1000		Anonymous, 2004	1
rat	Fischer 344 CD®F rats	94.9	oral	10 d	NOAEL	teratogenity	>50			Anonymous, 2004	2

Table A4.3. Bird and mammal toxicity data for tolclofos-methyl.

a According to Klimisch et al., 1997 b Studies with irrelevant application routes (single oral gavage, dermal, intraperitoneal, etc.) not included

c Studies with irrelevant endpoints (for instance, ChE activity) not included

Notes:

high mortality 1

Species	Species properties	purity	Application route ^b	Exposure time	Criterion	Test endpoint ^c	Effect conc. gavage [mg/kg bw/d]	Effect conc. diet [mg/kg diet]	Notes	Reference	Reliability index ^a
chicken	White Leghorn hens	96.8	diet	20 d	NOEC	neurotoxicity		>200		JMPR, 2002	2
chicken	White Leghorn hens	96.8	diet	3 mo	NOEC	neurotoxicity; food consumption		110		JMPR, 2002	2
Dog	Beagle	92.6	diet	13 wk	NOEC	clinical signs of toxicity		9		JMPR, 2002	2
Dog	beagle	92.6	diet	52 wk	NOEC	clinical signs of toxicity		4		JMPR, 2002	2
Mice	NMRKf(SPF71)	93.1	diet	13 wk	NOEC	clinical signs of toxicity		>320	1,2	JMPR, 2002	2
Mice	NMRI	93.1-95.9	diet	24 mo	NOEC	clinical signs of toxicity; carcinogenity		>150		JMPR, 2002	2
rabbit	New Zealand white	92.1	diet	14 d	NOEC	developmental effects		unclear	3	JMPR, 2002	3
rabbit	New Zealand white	92.1	oral gavage	14 d	NOAEL	developmental effects	4			JMPR, 2002	2
Rats	Wistar	92.6	diet	13 wk	NOEC	clinical signs of toxicity		>400	1,2	JMPR, 2002	
Rats	Wistar/SPF	92.6	diet	2 yr	NOEC	clinical signs of toxicity; carcinogenity		>240		JMPR, 2002	2
rats	Wistar/HAN	92.6	diet	3 mo	NOEC	mortality; clinical signs of toxicity		20	4	JMPR, 2002	2
rats	Wistar/HAN	92.6	diet	2-generation study	NOEC	reproduction; mortality		27		JMPR, 2002	2
rats	Wistar	89.4	diet	10 d	NOEC	developmental effects		>250		JMPR, 2002	2

Table A4.4. Bird and mammal toxicity data for triazophos.

a According to Klimisch et al., 1997 b Studies with irrelevant application routes (single oral gavage, dermal, intraperitoneal, etc.) not included

c Studies with irrelevant endpoints (for instance, ChE activity) not included

Notes:

According to EPA guidelines 1

GLP 2

Animals in bad health 3

Preliminary study 4

Appendix 5. References used in the appendices

- Adelman IR, Smith LL. 1976. Standard Test Fish Development Part I. Duluth, Minnesota, USA: U.S. E.P.A. Report no. EPA-600/3-76-061a.
- Adelman IR, Smith LL. 1976. Standard Test Fish Development Part II. Chronic toxicity of Guthion to the Fathead Minnow. Duluth, Minnesota, USA: U.S. E.P.A. Report no. EPA-600/3-76-061b. 22 pp.
- Adelman IR, Smith LL, Siesennop GD. 1976. Acute toxicity of sodium chloride, pentachlorophenol, guthion®, and hexavalent chromium to fathead minnows (*Pimephales promelas*) and goldfish (*Carassius auratus*). J Fish Res Board Can 33: 203-208.
- Alabaster JS. 1969. Survival of fish in 164 herbicides, insecticides, fungicides, wetting agents and miscellaneous substances. Int Pest Control 29-35.
- Aldenberg T, W. Slob. 1993. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf 25: 48-63.
- Ankley GT, Collyard SA. 1995. Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol 110C: 149-155.
- Ankley GT, Dierkes JR, Jensen DA, Peterson GS. 1991. Piperonyl butoxide as a tool in aquatic toxicological research with organophosphate insecticides. Ecotoxicol Environ Saf 21: 266-274.
- Anonymous. 1993. Evaluation on: Triazophos. Kings Pool, York, Great Britain: Department for Environment, Food and Rural Affairs, Pesticides Safety Directorate.
- Anonymous. 1996. Monograph Azinphos-methyl. European Union.
- Anonymous. 2004. Draft assessment report tolclofos-methyl. European Union.
- Astroff AB, Freshwater KJ, Eigenberg DA. 1998. Comparative organophosphate-induced effects observed in adult and neonatal sprague-dawley rats during the conduct of multigeneration toxicity studies. Reprod Toxicol 12: 619-645.
- Baticados MCL, Tendencia EA. 1991. Effects of Gusathion A on the survival and shell quality of juvenile Penaeus monodon. Aquaculture 93: 9-19.
- Benson WH, Long SF. 1991. Evaluation of humic-pesticide interactions on the acute toxicity of selected organophosphate and carbamate insecticides. Ecotoxicol Environ Saf 21:
- Butler PA. 1963. Commercial Fisheries Investigations. Circular of the Fish and Wildlife Service No. 167. Washington, USA. 11-25.
- Butler PA. 1964. Commercial Fishery Investigations. Pesticide-Wildlife Studies, 1963. Fish and Wildlife Circular No. 199. Washington D.C., USA 5-28.
- Carlson CA. 1966. Effects of three organophosphorus insecticides on immature *Hexagenia* and *Hydropsyche* of the Upper Mississippi River. Trans Am Fish Soc 95: 1-5.
- Carter FL, Graves JB. 1972. Measuring effects of insecticides on aquatic animals. La. Agric. 16: 14-15.
- Cochran RE, Burnett LE. 1996. Respiratory responses of the salt marsh animals, *Fundulus heteroclitus*, *Leiostomus xanthurus*, and *Palaemonetes pugio* to environmetnal hypoxia and hypercapnia and to the organophosphate pesticde, azinphosmethyl. J Exp Mar Biol Ecol 195: 125-144.
- Cope OB. 1963. Sport fishery investigations. Pesticide-Wildlife Studies 199: 29-42.
- Cope OB. 1965. Sport fishery investigations. U.S. Fish Wildl. Serv. Circ. 226: 51-63.
- Cope OB. 1966. Contamination of the freshwater ecosystem by pesticides. J Appl Ecol 3: 33-44.
- Cripe GM, Goodman LR, Hansen DJ. 1984. Effect of chronic exposure to EPN and to guthion on the critical swimming speed and brain acetylcholinesterase activity of *Cyprinodon variegatus*. Aquat Toxicol 5: 255-266.
- Crommentuijn T, Kalf DF, Polder MD, Posthumus R, Plassche EJ van de . 1997. Maximum Permissible Concentrations and Negligible Concentrations for pesticides . Bilthoven, the Netherlands: RIVM. Report no. 601501002.
- Culley DD, Ferguson DE. 1969. Patterns of insecticide resistance in the mosquitofish, Gambusia affinis. J

Fish Res Board Can 26: 2395-2401.

- Davis C, Hidu H. 1969. Effects of pesticides on embryonic development of clams and oysters and on survival and growth of the larvae. Fish Bull (Seattle) 67: 393-404.
- De Bruyn J, Hermens J. 1993. Inhibition of acetylcholinesterase and acute toxicity of organophosporous compounds to fish: a preliminary structure-activity analysis. Aquat Toxicol 24: 257-274.
- De Jong FMW, Brock, TCM, Foekema, EM, Leeuwangh, P. November 2006. Guidance for summarizing and evaluating aquatic micro- and mesocosm studies: A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. Bilthoven, the Netherlands: National Institute for Public Health and the Environment. Rapport nr. 601506009/2008.
- Deneer JW, Budde BJ, Weijers A. 1999. Variations in the lethal body burdens of organophosphorus compounds in the guppy. Chemosphere 38: 1671-1683.
- Devillers J, Meunier T, Chambon P. 1985. Intéret de la relation dose-effet-temps en écotoxicologie pour la détermination des différentes classes chmiques de toxiques. Techniques et sciences municipales L'eau 80: 329-334.
- Dive D, Leclerc H, Persoone G. 1980. Pesticide toxicity on the ciliate protozoan *Colpidium campylum*: possible consequences of the effect of pesticides in the aquatic environment. Ecotoxicol Environ Saf 4: 129-133.
- Dortland RJ. 1980. Toxicological evaluation of parathion and azinphosmethyl in freshwater model ecosystems. Wageningen: University of Wageningen.
- Eisler R. 1969. Acute toxicities of insecticides to marine decapod crustaceans. Crustaceana (Lienden) 16: 302-310.
- Eisler R. 1970. Acute toxicities of organochlorine and organophosphorus insecticides to estuarine fishes. Technical papers of the Bureau of Sport Fisheries and Wildlife. Washington D.C., USA 45: 1-20.
- Eisler R. 1970. Factors affecting pesticide-induces toxicity in an estuarine fish. Technical papers of the Bureau of Sport Fisheries and Wildlife. Washington D.C., USA 46 : 1-12.
- Emans HJB, v.d. Plassche EJ, Canton JH, Okkerman PC, Sparenburg PM. 1993. Validation of some extrapolation methods used for effect assessment. Environ Toxicol Chem 12: 2139-2154.
- Ferrari A, Anguiano OL, Soleńo J, Venturino A, Pechen de D'Angelo AM. 2004. Different susceptibility of two aquatic vertebrates (Oncorhynchus mykiss and Bufo arenarum) to azinphos methyl and carbaryl. Comp Biochem Physiol Part C Toxicol Pharmcol 139: 239-243.
- Fisher SW, Lydy MJ, Barger J, Landrum PF. 1993. Quantitative structure-activity relationships for predicting the toxicity of pesticides in aquatic systems with sediment. Environ Toxicol Chem 12: 1307-1318.
- Fraters D, Linders J. 1991. Adviesrapport Mevinphos. Bilthoven, the Netherlands. Letter report RIVM-SEC no. 88/678801/073.
- Frear DEH, J.E. Boyd. 1967. Use of Daphnia magna for the microbioassay of pesticides. I. Development of standardized techniques for rearing Daphnia and preparation of dosage-mortality curves for pesticides. J Econ Entomol 60: 1228-1237.
- Freitag D, Ballhorn L, Geyer H, Korte F. 1985. Environmental hazard profile of organic chemicals. Chemosphere 14: 1589-1616.
- Fulton MH, Scott GI. 1991. The effect of certain intrinsic and extrinsic variables on the acute toxicity of selected organophosphorus insectides to the mummichog, *Fundulus heteroclitus*. J Environ Sci Health Part B Pestic Food Contam Agric Wastes B26: 459-478.
- Gaaboub IA, El-Gayar FM, Abdel-Gawaad AA. 1973. Comparative studies on the sensitivity of *Culex pipiens fatigans* wies. mosquito larvae and the microcrustacean adults of *Daphnia magna* straus as microbioassay test organisms for screening certain soil insecticides applied to cotton cultivations in Egypt. Bull Entomol Soc Egypt Econ. Ser. VII: 193-199.
- Galindo Reyes JG, Leyva NR, Millan OA, Lazcano GA. 2002. Effects of pesticides on DNA and protein of shrimp larvae *Litopenaeus stylirostris* of the California Gulf. Ecotoxicol Environ Saf 53: 191-195.
 Gaufin AR, Jensen LD, Nebeker AV, Nelson T, Teel RW. 1965. The toxicity of ten organic insecticides to
 - RIVM Report 601714004

various aquatic invertebrates. Water and Sewage Works 12: 276-279.

- Geiger DL, Brooke LT, Call DJ, eds. 1990. Acute toxicities of organic chemicals to fathead minnows. Superior, WI, USA: University of Wisconsin-Superior. 332 pp.
- Giddings JM, Biever RC, Helm RL, Howick GL, DeNoyelles FJ. 1994. The fate and effects of guthion (azinphos methyl) in mesocosms. In: Graney RL, Kennedy JK, Rodgers JH, eds. Simulated field studies in aquatic ecological risk assessment. Boca Raton, USA: Lewis Publishers. p. 469-496.
- Guzzella L, Gronda A, Colombo L. 1997. Acute toxicity of organophosphorus insecticides to marine invertebrates. Bull Environ Contam Toxicol 59: 313-320.
- Hall LW, Anderson RD. 1995. The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit Rev Toxicol 25: 281-346.
- Harderson S, Wratten SD. 2000. Sensitivity of aquatic life stages of *Xanthocnemis zealandica* (Odonata: Zygoptera) to azinphos-methyl and carbaryl. N Z J Mar Freshw Res 34: 117-123.
- Harris ML, Chora L, Bishop CA, Bogart JP. 2000. Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, *Rana pipiens*, and *Bufo americanus*. Bull Environ Contam Toxicol 64: 263-270.
- Hemmer MJ, Middaugh DP, Comparetta V. 1992. Comparative acute sensitivity of larval topsmelt, *Atherinops affinis*, and inland silverside, *Menidia beryllina*, to 11 chemicals. Environ Toxicol Chem 11: 401-408.
- Henderson C, Pickering QH, Tarzwell CM. 1960. The toxicity of oragnic phosphorus and chlorinated hydrocarbon insecticides to fish. Biological Problems in Water Pollution 2: 76-88.
- Hill EF, R.G. Heath, J.W. Spann, J.D. Williams. 1975. Lethal dietary toxicities of environmental pollutants to birds. U.S. Fish Wildl. Serv. 191: 1-61.
- Hilsenhoff WL. 1959. The evaluation of insecticides for the control of *Tendipes plumosus* (Linnaeus). J Econ Entomol 52: 331-332.
- Holcombe GW, Phipps GL, Sulaiman AH, Hoffman AD. 1987. Simultaneous multiple species testing: acute toxicity of 13 chemicals to 12 diverse freshwater amphibian, fish, and invertebrate families. Arch Environ Contam Toxicol 16: 697-710.
- Hopf HS, Muller RL. 1962. Laboratory breeding and testing of *Australorbis glabratusi for molluscicidal screening*. Bull W H O 27: 783-789.
- HSDB. 2007. Azinphos ethyl. Hazardous Substances Data Bank. http://toxnet.nlm.nih.gov/cgibin/sis/search/r?dbs+hsdb:@term+@rn+86-50-0.
- IUCLID, 2000. http://ecb.jrc.it/esis/
- Jensen LD, Gaufin AR. 1964. Effects of ten organic insecticides on two species of stonefly naiads. Trans Am Fish Soc 93: 27-34.
- Jensen LD, Gaufin AR. 1966. Acute and long-term effects of organic insecticides on two species of stonefly naiads. J. Wat. Pollut. Control Fed. 38: 1273-1286.
- JMPR. 2002. Pesticide residues in food 2002 Joint FAO/WHO Meeting on pesticide residues. FAO/WHO.
- Kadlec MC, Benson WH. 1995. Relationship of aquatic natural oragnic material characteristics to the toxicity of selected insecticides. Ecotoxicol Environ Saf 31: 84-97.
- Katz M. 1961. Acute toxicity of some organic insecticides to three species of salmonids and to the threespine stickleback. Trans Am Fish Soc 90: 264-268.
- Klimisch HJ, Andreae M, Tillman U. 1997. A systematic approach for evaluating the quality of experimetnal toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25: 1-5.
- Klosterhaus SL, DiPinto LM, Chandler GT. 2003. A comparative assessment of azinphosmethyl bioaccumulation and toxicity in two estuarine meiobenthic harpacticoid copepods. Environ Toxicol Chem 22: 2960-2968.
- Kristoff G, Guerrero NV, De d'Angelo AMP, Cochon AC. 2006. Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: *Biomphalaria glabrata* and *Lumbriculus variegatus*. Toxicology 222: 185-194.
- Lauth JR, Scott GI, Cherry DS, Buikema AL. 1996. A modular esturaine mesocosm. Environ Toxicol Chem 15: 630-637.
- Lewallen LL. 1959. Toxicity of several organophosphorus insecticides to *Gambusia affinis* (Baird and Girard) in laboratory tests. Mosq News 19: 1-2.
- Lichentstein EP, Schulz KR, Skrentny RF, Tsukano Y. 1966. Toxicity and fate of insectide residues in water. Arch Environ Health 12: 199-212.
- Ma J, Lin F, Wang P. 2004. Differential response of four cyanobacterial and green algal species to triazophos, fentin acetate, and ethephon. Bull Environ Contam Toxicol 73: 890-897.
- Macek KJ, Hutchinson C, Cope OB. 1969. The effects of temperature on the susceptibility of bluegills and rainbow trout to selected pesticides. Bull Environ Contam Toxicol 4: 174-183.
- Macek KJ, McAllister WA. 1970. Insecticide susceptibility of some common fish family representatives. Trans Am Fish Soc 1: 20-27.
- Malone CR, Blaylock BG. 1970. Toxicity of insecticide formulations to carp embryos reared in vitro. J Wildl Manag 34: 460-463.
- Marking LL, Mauck WL. 1975. Toxicity of paired mixtures of candidate forest insecticides to rainbow trout. Bull Environ Contam Toxicol 13: 518-523.
- Mayer FL. 1986. Acute toxicity handbook of chemicals to estuarine organisms. Gulf Breeze, FL, USA: Environmental Protection Agency.
- Mayer FLJr, Ellersieck MR. 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resource Publication 160. Washington, D.C., USA: United States Department of the Interior. Fish and Wildlife Service.
- Morton MG, Mayer FL, Dickson KL, Waller WT, Moore JC. 1997. Acute and chronic toxicity of azinphosmethyl to two estuarine species, *Mysidopsis bahia* and *Cyprinodon variegatus*. Arch Environ Contam Toxicol 32: 436-441.
- Mulla MS, Amant JS, Anderson LD. 1967. Evaluation of organic pesticides for possible use as fish toxicants. Prog. Fish-Cult. 29: 36-42.
- Naqvi SM, Ferguson DE. 1968. Pesticide tolerances of selected freshwater invertebrates. J. Miss. Acad. Sci. 14: 121-157.
- Naqvi SM, Ferguson DE. 1970. Levels of insecticide resistance in fresh-water shrimp, *Palaemonetes kadiakensis*. Trans Am Fish Soc 4: 696-699.
- Naqvi SMZ. 1973. Toxicity of twenty-three insecticides to a tubificid worm *Branchiura sowerbyi* from the Mississippi Delta. J Econ Entomol 66: 70-74.
- Nebeker AV, Gaufin AR. 1964. Bioassays to determine pesticide toxicity to the amphipod crustacean, *Gammarus lacustris*. Utah Academy Proceedings 41: 64-67.
- Nebeker AV, Schuytema GS, Griffis WL, Cataldo A. 1998. Impact of guthion on survival and growth of the frog *Pseudacris regilla* and the salamanders *Ambystoma gracile* and *Ambystoma maculatum*. Arch Environ Contam Toxicol 35: 48-51.
- Ozmen M, Sener S, Mete A, Kucukbay H. 1999. In vitro and in vivo acetylcholinesterase-inhibiting effect of new classes of organophosphorous compounds. Environ Toxicol Chem 18: 241-246.
- Panman E, Linders J. 1990. Adviesrapport Azinphos-methyl. Bilthoven, the Netherlands. RIVM-SEC Letter report no. 88/678801/068.
- Panman E, Linders J. 1991. Adviesrapport Triazophos. Bilthoven, the Netherlands. RIVM-SEC Letter report no. 88/678801/082.
- Panman E, Linders J. 1992. Adviesrapport Heptenophos. Bilthoven, the Netherlands: RIVM-SEC Letter report no. 88/678801/076.
- Pantani C, Ghetti PF, Cavacini A, Muccioni P. 1990. Acute toxicity of equitoxic binary mixtures of some metals, surfactants and pesticides to the freshwater amphipod *Gammarus italicus* Goedm. Environ Toxicol 11: 1143-1146.
- Pantani C, Pannunzio G, De Cristofaro M, Novelli AA, Salvatori M. 1997. Comparative acute toxicity of some pesticides, metals, and surfactants to *Gammarus italicus* Goedm. and *Echinogammarus tibaldii*

riym

Pink. and Stock (Crustacea: Amphipoda). Bull Environ Contam Toxicol 59: 963-967.

Pape-Lindstrom PA, Lydy MJ. 1997. Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16: 2415-2420.

Persoone G. 1988. Hazard prediction and relevance of laboratory-scale studies. In: Newman PJ, Agg AR, eds. Environmental Protection of the North Sea. London: Butterworth Heineman.

- Peterson RH. 1976. Temperature selection of juvenile atlantic salmon (*Salmo salar*) as influenced by various toxic substances. J Fish Res Board Can 33: 1722-1730.
- Pickering QH, Henderson C, Lemke AE. 1962. The toxicity of organic phosphorus insecticides to different species of warmwater fishes. Trans Am Fish Soc 91: 175-184.
- Portmann JE. 1972. Results of acute toxicity tests with marine organisms, using a standard method. In: Ruivo M, ed. Marine pollution and sea life. London, England: FAO, Rome, Italy/ Fishing News (Books) Ltd. p. 212-217.
- Portmann JE, Wilson, KW. 1971. The toxicity of 140 substances to the brown shrimp and other marine animals. Shellfish information Leaflet. Ministry of Agriculture, Fisheries and Food.
- Rettich F. 1979. Laboratory and field investigations in Czechoslovakia with fenitrothion, pirimiphos-mehtyl, temephos and other organophosphorous larvicides applied as sprays for control of *Culex pipiens molestus* forskal and *Aedes cantans* meigen. Mosq News 39: 320-328.
- Sanchez-Fortun S, Sanz-Barrera F, Barahona-Gomariz MV. 1995. Acute toxicities of selected insecticides to the aquatic arthropod *Artemia salina*. Bull Environ Contam Toxicol 54: 76-82.
- Sanders HO. 1969. Toxicity of pesticides to the Crustacean Gammarus lacustris. Techn. Paper 25: 1-18.
- Sanders HO. 1970. Toxicities of some herbicides to six species of freshwater crustaceans. J. Water Pollut. Control Fed. 42: 1544-1550.
- Sanders HO. 1972. Toxicity of some insecticides to four species of malacostracan crustaceans. Techn. Paper 66: 3-19.
- Sanders HO, Cope OB. 1968. The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol Oceanogr 13: 112-117.
- Sanders HO, O.B. Cope. 1966. Toxicities of several pesticides to two species of cladocerans. Trans Am Fish Soc 95: 165-169.
- Schmidt CH, Weidhaas DE. 1958. Absorption and toxicity of three radioactive insecticides in larvae of two species of mosquitoes. J Econ Entomol 51: 640-644.
- Schulz R, Dabrowski JM. 2001. Combined effects of predatory fish and sublethal pesticide contamination on the behavior and mortality of mayfly nymphs. Environ Toxicol Chem 20: 2537-2543.
- Schuytema GS, Nebeker AV, Griffis WL. 1994. Toxicity of guthion® and Guthion® 2S to *Xenopus laevis* embryos. Arch Environ Contam Toxicol 27: 250-255.
- Schuytema GS, Nebeker AV, Griffis WL. 1995. Comparative toxicity of Guthion and Guthion 2S to *Xenopus laevis* and *Pseudacris regilla* tadpoles. Bull Environ Contam Toxicol 54: 382-388.
- Solon JM, Nair JH. 1970. The effect of a sublethal concentration of LAS on the acute toxicity of various phosphate pesticides to the Fathead Minnow (*Pimephales promelas* Rafinesque). Bull Environ Contam Toxicol 5: 408-413.
- Stay FS, Jarvinen AW. 1995. Use of microcosm and fish toxicity data to select mesocosm treatment concentrations. Arch Environ Contam Toxicol 28: 451-458.
- Tanner DK, Knuth ML. 1995. Effects of azinphos-methyl on the reproductive success of the bluegill sunfish, *Lepomis macrochirus*, in littoral enclosures. Ecotoxicol Environ Saf 32: 184-193.
- Teather K, Jardine C, Gormley K. 2005. Behavioral and sex ratio modification of Japanese Medaka (Oryzias latipes) in response to environmentally relevant mixtures of three pesticides. Environ Toxicol 20: 110-117.
- Tejada AW, Bajet CM, Magbauna MG, Gambalan NB, Araez LC, Magallona ED. 1994. Toxicity of pesticides to target and non-target fauna of the lowland rice ecosystem. In: Widianarko B, Vink K, Van Straalen NM, eds. Environ. Toxicol. South East Asia. Amsterdam, The Netherlands: VU University Press. p. 89-103.

- Tooby TE, Hursey PA, Alabaster JS. 1975. The acute toxicity of 102 pesticides and miscellaneous substances to fish. Chemistry and Industry 523-526.
- Touart LW. 1988. Aquatic mesocosm tests to support pesticide registration. U.S. Environmental Protection Agency. Report no. EPA 540/09-88-035.
- Tsuda T, Aoki S, Kojima M, Fujita T. 1992. Accumulation and excretion of pesticides used in golf courses by carp (*Cyprinus carpio*) and willow shiner (*Gnathopogon caerulescens*). Comp Biochem Physiol 101C: 63-66.
- Tsuda T, Kojima M, Harada H, Nakajima A, Aoki S. 1997. Relationships of bioconcentration factors of organophosphate pesticides among species of fish. Comp Biochem Physiol 116C: 213-218.
- US EPA. 2000. Reregistration Eligibility Decision Addendum and FQPA Tolerance Reassessment Progress Report Coumaphos. Washington DC, USA: US EPA, Office of prevention, pesticides and toxic substances.
- Van den Heever JA, Grobbelaar JU. 1997. The use of oxygen evolution to assess the short-term effects of toxicants on algal photosynthetic rates. Water SA 23: 233-237.
- Van Dolah RF, Maier PP, Fulton MH, Scott GI. 1997. Comparison of azinphosmethyl toxicity to juvenile Red Drum (*Sciaenops ocellatus*) and the mummichog (*Fundulus heteroclitus*). Environ Toxicol Chem 16: 1488-1493.
- Verschueren. 1983. Handbook of environmental data on organic chemicals. Nostrand Reinhold Company Inc.
- Visser JT, Linders J. 1992. Adviesrapport Tolclofos-methyl. Bilthoven, The Netherlands: RIVM. Report no. 90/670101/018. 46 pp.
- Wagner C, Løkke H. 1991. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res 25: 1237-1242.

Wellborn TL. 1971. Toxicity of some compounds to striped bass fingerlings. Prog. Fish.-Cult. 33: 32-36. WHO. 1994. WHO/FAO data sheet on pesticides No. 72. Azinphos-ethyl

Datum : 20 maart 2009 Rapportnummer : 601714004/2008

Erratum bij rapport 601714004/2008: Environmental risk limits for organophosphorous pesticides

Erratum to report 601714004/2008: Environmental risk limits for organophosphorous pesticides

- <u>Page 49, section 3.3.3.3</u> The ADI is given as 3 μ g/kg_{bw}, this should read **0.3 \mug/kg_{bw}**. The units of the MPC are given in mg/kg and mg/L, which should be μ g/kg and μ g/L. The MPC_{hh food} should read **18.3 \mug/kg**, the MPC_{hh food}, water and MPC_{hh food}, marine are **0.034 \mug/L = 3.4 x 10⁻² \mug/L.**
- <u>Page 50, section 3.3.3.6</u> The provisional MAC_{eco, marine} is given as "7.4 7.4 x $10^{-4} / 5 = 1.5 \times 10^{-3} \,\mu g/L$ ". This should read: "7.4 x $10^{-4} / 5 = 1.5 \times 10^{-4} \,\mu g/L$."
- <u>Page 68, section 3.6.3.6</u> The first and last line of the second paragraph should be deleted. The second paragraph should read as follows: "The MAC_{eco, water} value of 0.71 μ g/L is lower than the MPC_{water}, and should be adjusted to be equal to the MPC_{water} (1.2 μ g/L)."
- <u>Page 73, section 3.7.3.3</u> The units of the MPC are given in mg/kg and mg/L, this should be µg/kg and µg/L. The MPC_{hh food} should read 60.9 µg/kg, the MPC_{hh food, water} and MPC_{hh food, marine} are 0.29 µg/L.
- Summary tables on page 17 (Tabel 1), page 19 (Table 2) and page 75 (Table 54)
 - The corrected $MPC_{hh food, water}$ and $MPC_{hh food, marine}$ as given under the 1st and 4th bullet should be implemented in these tables.
 - The environmental risk limits for azinphos-ethyl and azinphos-methyl as presented in the tables are not correctly copied from the main text.
 - o Reference to the footnotes is not complete.

A corrected version of the tables is presented on the following page.

Milieurisico- grens ^a	azinphos-ethyl	azinphos-methyl	coumaphos	heptenophos	mevinphos	tolclofos-methyl	triazophos
Oude MTR _{water}	$1,1 \times 10^{-2}$	$1,2 \times 10^{-2}$	$7,0 \times 10^{-4}$	$2,0 \times 10^{-2}$	$2,0 \times 10^{-3}$	0,79	$3,2 \times 10^{-2}$
MTR _{eco, water}	$1,1 \times 10^{-3}$	$6,5 \times 10^{-3}$	$3,4 \times 10^{-3}$	$2,0 \times 10^{-3}$	$1,7 \times 10^{-4}$	1,2	$1,0 \times 10^{-3}$
MTR _{dw, water}	0,1	0,1	0,1	0,1	0,1	0,1	0,1
MTR _{sp, water}	0,51	n.a. ^c	$7,5 imes 10^{-2}$	n.a. ^c	n.a. ^c	3,4	0,48
MTR _{hh food, water}	n.a. ^b	n.a. ^c	$3,4 \times 10^{-2}$	n.a. ^c	n.a. ^c	n.a. ^c	0,29
MTR _{water}	$1,1 \times 10^{-3}$	$6,5 imes 10^{-3}$	$3,4 \times 10^{-3}$	$2,0 \times 10^{-3}$	1,7 x 10 ⁻⁴	1,2	$1,0 \times 10^{-3}$
MTR _{eco, marien}	$1,1 \times 10^{-4}$	$1,3 \times 10^{-3}$	$6,8 imes 10^{-4}$	$2,0 imes 10^{-4}$	1,7 x 10 ⁻⁵	n.a. ^b	$1,0 \times 10^{-4}$
MTR _{sp, marien}	0,51	n.a. ^c	$7,5 \times 10^{-2}$	n.a. ^c	n.a. ^c	1,7	0,48
MTR _{hh food, marien}	n.a. ^b	n.a. ^c	$3,4 \times 10^{-2}$	n.a. ^c	n.a. ^c	n.a. ^c	0,29
MTR _{marien}	$1,1 \times 10^{-4}$	$1,3 \times 10^{-3}$	$6,8 \times 10^{-4}$	$2,0 \times 10^{-4}$	$1,7 \times 10^{-5}$	n.a. ^b	$1,0 \times 10^{-4}$
VR _{water}	$1,1 \times 10^{-5}$	$6,5 imes 10^{-5}$	$3,4 \times 10^{-5}$	$2,0 \times 10^{-5}$	$1,7 \times 10^{-6}$	$1,2 \times 10^{-2}$	$1,0 \times 10^{-5}$
VR _{marien}	$1,1 \times 10^{-6}$	$1,3 \times 10^{-5}$	$6,8 \times 10^{-6}$	$2,0 \times 10^{-6}$	$1,7 \times 10^{-7}$	n.a. ^b	$1,0 \times 10^{-6}$
MAC _{eco, water}	$1,1 \times 10^{-2}$	0,014	$3,4 \times 10^{-3}$	$2,0 \times 10^{-2}$	$1,7 \times 10^{-2}$	1,2	$2,0 \times 10^{-2}$
MAC _{eco, marien} ^d	$1,1 \times 10^{-3}$	$2,8 imes 10^{-3}$	$6,8 \times 10^{-4}$	$2,0 \times 10^{-3}$	$1,7 \times 10^{-3}$	n.a. ^b	$2,0 \times 10^{-3}$
ER _{eco, water}	1,1	4,8	4,5	$1,7 \times 10^{2}$	4,6	40	$1,1 \times 10^{2}$
ER _{eco, marien}	1,1	4,8	4,5	$1,7 \times 10^{2}$	4,6	n.d. ^b	$1,1 \times 10^{2}$

Tabel 1. Afgeleide MTR, VR, MAC_{eco} en ER_{eco} waarden (in µg/L).

a: subscript: water = zoetwater; marien = mariene wateren; eco = gebaseerd op ecotoxicologische data; dw = gebaseerd op humane concumptie van drinkwater; sp = doorvergiftiging; hh food = gebaseerd op humane visconsumptie

b: niet afgeleid wegens ontbreken gegevens

c: niet afgeleid, drempelwaarden voor afleiding niet overschreden

d: voorlopige waarde, zie methoden-paragraaf

Environmental risk limit ^a	azinphos-ethyl	azinphos-methyl	coumaphos	heptenophos	mevinphos	tolclofos-methyl	triazophos
old MPC _{water}	1.1×10^{-2}	1.2×10^{-2}	$7.0 imes10^{-4}$	$2.0 imes 10^{-2}$	$2.0 imes 10^{-3}$	0.79	3.2×10^{-2}
MPC _{eco, water}	1.1×10^{-3}	$6.5 imes 10^{-3}$	3.4×10^{-3}	$2.0 imes 10^{-3}$	$1.7 imes 10^{-4}$	1.2	1.0×10^{-3}
MPC _{dw, water}	0.1	0.1	0.1	0.1	0.1	0.1	0.1
MPC _{sp, water}	0.51	n.d. ^c	$7.5 imes 10^{-2}$	n.d. ^c	n.d. ^c	3.4	0.48
MPC _{hh food, water}	n.d. ^b	n.d. ^c	3.4×10^{-2}	n.d. ^c	n.d. ^c	n.d. ^c	0.29
MPC _{water}	1.1×10^{-3}	$6.5 imes 10^{-3}$	3.4×10^{-3}	$2.0 imes 10^{-3}$	1.7 x 10 ⁻⁴	1.2	1.0×10^{-3}
MPC _{eco, marine}	1.1×10^{-4}	1.3×10^{-3}	$6.8 imes 10^{-4}$	$2.0 imes 10^{-4}$	1.7 x 10 ⁻⁵	n.d. ^b	1.0×10^{-4}
MPC _{sp, marine}	0.51	n.d. ^c	7.5×10^{-2}	n.d. ^c	n.d. ^c	1.7	0.48
MPC _{hh food, marine}	n.d. ^b	n.d. ^c	3.4×10^{-2}	n.d. ^c	n.d. ^c	n.d. ^c	0.29
MPC _{marine}	1.1×10^{-4}	1.3×10^{-3}	$6.8 imes 10^{-4}$	$2.0 imes 10^{-4}$	1.7×10^{-5}	n.d. ^b	1.0×10^{-4}
NC _{water}	1.1×10^{-5}	$6.5 imes 10^{-5}$	3.4×10^{-5}	$2.0 imes 10^{-5}$	1.7×10^{-6}	1.2×10^{-2}	1.0×10^{-5}
NC _{marine}	1.1×10^{-6}	1.3×10^{-5}	$6.8 imes 10^{-6}$	$2.0 imes 10^{-6}$	1.7×10^{-7}	n.d. ^b	1.0×10^{-6}
MAC _{eco, water}	1.1×10^{-2}	0.014	3.4×10^{-3}	$2.0 imes 10^{-2}$	1.7×10^{-2}	1.2	2.0×10^{-2}
MAC _{eco, marine} ^d	1.1×10^{-3}	2.8×10^{-3}	$6.8 imes 10^{-4}$	$2.0 imes 10^{-3}$	1.7×10^{-3}	n.d. ^b	2.0×10^{-3}
SRC _{eco, water}	1.1	4.8	4.5	1.7×10^2	4.6	40	1.1×10^{2}
SRC _{eco, marine}	1.1	4.8	4.5	1.7×10^{2}	4.6	n.d. ^b	1.1×10^{2}

Table 2 and 54. Derived MPC, NC, MAC $_{eco}$, and SRC $_{eco}$ values (in $\mu g/L$).

a: subscript: water = freshwater; marine = marine waters; eco = based on ecotoxicologal data; dw = based on human consumption of drinking water; sp = secondary poisoning; hh food = based on human fish consumption

b: not derived due to lack of data

c: not derived, triggers for derivation not met

d: provisional value, see methods section

Voor accoord,

dr. J.M. Roels Hoofd Stoffen Expertise Centrum

RIVM

National Institute for Public Health and the Environment

P.O. Box 1 3720 BA Bilthoven The Netherlands www.rivm.com